In laboratory experiments involving wind or water turbines, it is often desirable to correct measured performance for the effects of model blockage. However, there has been limited experimental validation of the analytical blockage corrections presented in the literature. Therefore, the objective of this study is to evaluate corrections against experimental data and recommend one or more for future use. For this investigation, we tested a crossflow turbine and an axial-flow turbine under conditions of varying blockage with other non-dimensional parameters, such as the free-stream Reynolds and Froude numbers, held approximately constant. We used the resulting experimental data to assess the effectiveness of multiple analytical blockage corrections for both turbine types. Of the corrections evaluated, two are recommended. However, as these methods are based on axial momentum theory, we observe that corrections are more effective for thrust than power. We also find that increasing blockage changes the local Reynolds number, which can affect turbine performance but is not reflected in axial momentum theory.
When experimentally evaluating the performance of a wind or water current turbine, one must impose a regulating torque on the turbine rotor by electrical or mechanical means. Some options limit this controlling torque to a purely resistive quantity, while servomotors and stepper motors allow torque to be applied in the direction of turbine rotation. Any control mode that results in net positive power for a turbine may be of interest for energy harvesting, and all of these are net “fluid-driven.” Here, we present experiments that characterize the power, torque, and force coefficients of a cross-flow turbine operated at a constant rotational speed or under a constant imposed control torque. Time- and phase-average performance coefficients are largely equivalent for the two strategies although torque-regulated control is restricted to a narrower range of rotational speeds and the two strategies result in slightly different blade kinematics.
In our paper we demonstrate that the filtration equation used by Gorban' et al. for determining the maximum efficiency of plane propellers of about 30 percent for free fluids plays no role in describing the flows in the atmospheric boundary layer (ABL) because the ABL is mainly governed by turbulent motions. We also demonstrate that the stream tube model customarily applied to derive the Rankine-Froude theorem must be corrected in the sense of Glauert to provide an appropriate value for the axial velocity at the rotor area. Including this correction leads to the Betz-Joukowsky limit, the maximum efficiency of 59.3 percent. Thus, Gorban' et al.'s 30% value may be valid in water, but it has to be discarded for the atmosphere. We also show that Joukowsky's constant circulation model leads to values of the maximum efficiency which are higher than the Betz-Jowkowsky limit if the tip speed ratio is very low. Some of these values, however, have to be rejected for physical reasons. Based on Glauert's optimum actuator disk, and the results of the blade-element analysis by Okulov and Sørensen we also illustrate that the maximum efficiency of propellertype wind turbines depends on tip-speed ratio and the number of blades.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.