A preventative HIV-1 vaccine is an essential intervention needed to halt the HIV-1 pandemic. Neutralizing antibodies protect against HIV-1 infection in animal models, and thus an approach toward a protective HIV-1 vaccine is to induce broadly cross-reactive neutralizing antibodies (bnAbs). One strategy to achieve this goal is to define envelope (Env) evolution that drives bnAb development in infection and to recreate those events by vaccination. In this study, we report the immunogenicity, safety, and efficacy in rhesus macaques of an SIV-based integrase defective lentiviral vector (IDLV) expressing sequential gp140 Env immunogens derived from the CH505 HIV-1-infected individual who made the CH103 and CH235 bnAb lineages. Immunization with IDLV expressing sequential CH505 Envs induced higher magnitude and more durable binding and neutralizing antibody responses compared to protein or DNA +/− protein immunizations using the same sequential envelopes. Compared to monkeys immunized with a vector expressing Envs alone, those immunized with the combination of IDLV expressing Env and CH505 Env protein demonstrated improved durability of antibody responses at six months after the last immunization as well as lower peak viremia and better virus control following autologous SHIV-CH505 challenge. There was no evidence of vector mobilization or recombination in the immunized and challenged monkeys. Although the tested vaccines failed to induce bnAbs and to mediate significant protection following SHIV-challenge, our results show that IDLV proved safe and successful at inducing higher titer and more durable immune responses compared to other vaccine platforms.
To the Editor: The HIV Organ Policy Equity (HOPE) Act 1 allows persons living with human immunodeficiency virus (HIV) infection to accept HIV-positive donor organs. An analysis of viral quasispecies from donor and recipient provides an opportunity to determine whether the transplanted kidney can serve as a source of virus and to explore the potential for viral superinfection or recombination in the recipient. A previous study showed the presence of HIV RNA and DNA in renal epithelial cells. 2 Furthermore, an analysis of HIV sequences from kidney and urine samples showed the presence of a unique viral compartment in the
People living with HIV are at higher risk for acute and chronic kidney disease compared with uninfected individuals. Kidney disease in this population is multifactorial, with several contributors including HIV infection of kidney cells, chronic inflammation, genetic predisposition, aging, comorbidities, and coinfections. In this review, we provide a summary of recent advancements in the understanding of the mechanisms and implications of HIV infection and kidney disease, with particular focus on the role of direct HIV infection of renal cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.