In bacteria, the regulation of gene expression by cis-acting transcriptional riboswitches located in the 5'-untranslated regions of messenger RNA requires the temporal synchronization of RNA synthesis and ligand binding-dependent conformational refolding. Ligand binding to the aptamer domain of the riboswitch induces premature termination of the mRNA synthesis of ligand-associated genes due to the coupled formation of 3'-structural elements acting as terminators. To date, there has been no high resolution structural description of the concerted process of synthesis and ligand-induced restructuring of the regulatory RNA element. Here, we show that for the guanine-sensing xpt-pbuX riboswitch from Bacillus subtilis, the conformation of the full-length transcripts is static: it exclusively populates the functional off-state but cannot switch to the on-state, regardless of the presence or absence of ligand. We show that only the combined matching of transcription rates and ligand binding enables transcription intermediates to undergo ligand-dependent conformational refolding.DOI:
http://dx.doi.org/10.7554/eLife.21297.001
In this study, we have optimized NMR methodology to determine the thermodynamic parameters of basepair opening in DNA and RNA duplexes by characterizing the temperature dependence of imino proton exchange rates of individual basepairs. Contributions of the nuclear Overhauser effect to exchange rates measured with inversion recovery experiments are quantified, and the influence of intrinsic and external catalysis exchange mechanisms on the imino proton exchange rates is analyzed. Basepairs in DNA and RNA have an approximately equal stability, and the enthalpy and entropy values of their basepair dissociation are correlated linearly. Furthermore, the compensation temperature, T(c), which is derived from the slope of the correlation, coincides with the melting temperature, and duplex unfolding occurs at that temperature where all basepairs are equally thermodynamically stable. The impact of protium-deuterium exchange of the imino hydrogen on the free energy of RNA basepair opening is investigated, and it is found that two A·U basepairs show distinct fractionation factors.
Photolabile protecting groups are a versatile tool to trigger reactions by light irradiation. In this study, we have investigated the influence of the absolute configuration of the 1-(2-nitrophenyl)ethyl (NPE) cage group on a 15-base-pair duplex DNA. Using UV melting, we determined the global stability of the unmodified and the selectively (S)- and (R)-NPE-modified DNA sequences, respectively. We observe a differently destabilizing effect for the two NPE stereoisomers on the global stability. Analysis of the temperature dependence of imino proton exchange rates measured by NMR spectroscopy reveals that this effect can be attributed to decreased base pair stabilities of the caged and the 3'-neighbouring base pair, respectively. Furthermore, our NMR based structural models of the modified duplexes provide a structural basis for the distinct effect of the (S)- and the (R)-NPE group.
The work was supported by the "Schering-Stiftung" (H.S.S.) and the EU project "WeNMR" (H.R.A.J.). We thank Elke Stirnal for HPLC separation of the photocaged DNA diastereomers. Work at BMRZ is supported by the state of Hesse. H.S. and A.H. are members of the Cluster of Excellence Macromolecular Complexes. Financial support through the DFG (grant number SFB 902) is gratefully acknowledged. NPE = 1-(2-nitrophenyl)ethyl. Supporting information for this article is available on the WWW under http://dx.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.