Biological color may be adaptive or incidental, seasonal or permanent, species- or population-specific, or modified for breeding, defense or camouflage. Although color is a hugely informative aspect of biology, quantitative color comparisons are notoriously difficult. Color comparison is limited by categorization methods, with available tools requiring either subjective classifications, or expensive equipment, software, and expertise. We present an R package for processing images of organisms (or other objects) in order to quantify color profiles, gather color trait data, and compare color palettes on the basis of color similarity and amount. The package treats image pixels as 3D coordinates in a “color space,” producing a multidimensional color histogram for each image. Pairwise distances between histograms are computed using earth mover’s distance, a technique borrowed from computer vision, that compares histograms using transportation costs. Users choose a color space, parameters for generating color histograms, and a pairwise comparison method to produce a color distance matrix for a set of images. The package is intended as a more rigorous alternative to subjective, manual digital image analyses, not as a replacement for more advanced techniques that rely on detailed spectrophotometry methods unavailable to many users. Here, we outline the basic functions of colordistance, provide guidelines for the available color spaces and quantification methods, and compare this toolkit with other available methods. The tools presented for quantitative color analysis may be applied to a broad range of questions in biology and other disciplines.
Color is a central aspect of biology, with important impacts on ecology and evolution.Organismal color may be adaptive or incidental, seasonal or permanent, species-or population-specific, or modified for breeding, defense or camouflage. Thus, measuring and comparing color among organisms provides important biological insights. However, color comparison is limited by color categorization methods, with few universal tools available for quantitative color profiling and comparison. We present a package of R tools for processing images of organisms (or other objects) in order to quantify color profiles, gather color trait data, and compare color palettes in a reproducible way. The package treats image pixels as 3D coordinates in "color space", producing a multidimensional color histogram for each image. Pairwise distances between histograms are computed using earth mover's distance or a combination of more conventional distance metrics. The user sets parameters for generating color histograms, and comparative color profile analysis is performed through pairwise comparisons to produce a color distance matrix for a set of images. The toolkit provided in the colordistance R package can be used for analyses involving quantitative color variation in organisms with statistical testing. We illustrate the use of colordistance with three biological examples: hybrid coloration in butterflyfishes; mimicry in wing coloration in Heliconius butterflies; and analysis of background matching in camouflaging flounder fish. The tools presented for quantitative color analysis may be applied to a broad range of questions in biology and other disciplines. Color is a central aspect of biology, with important impacts on ecology and evolution. Organismal color may be adaptive or incidental, seasonal or permanent, species-or population-specific, or modified for breeding, defense or camouflage. Thus, measuring and comparing color among organisms provides important biological insights. However, color comparison is limited by color categorization methods, with few universal tools available for quantitative color profiling and comparison. We present a package of R tools for processing images of organisms (or other objects) in order to quantify color profiles, gather color trait data, and compare color palettes in a repeatable way. The package treats image pixels as 3D coordinates in "color space", producing a multidimensional color histogram for each image. Pairwise distances between histograms are computed using earth mover's distance or a combination of more conventional distance metrics. The user sets parameters for generating color histograms, and comparative color profile analysis is performed through pairwise comparisons to produce a color distance matrix for a set of images. The toolkit provided in the colordistance R package can be used for analyses involving quantitative color variation in organisms with statistical testing. We illustrate the use of colordistance with three biological examples: hybrid coloration in butterflyfishes; mimi...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.