Many studies have shown that the oral mucosa and salivary glands are sensitive to estrogen action. However, the expression of estrogen receptors (ERs) within these tissues is an area of controversy. ERs exist as two subtypes (ER and ER ), and we hypothesized that the incongruity between ER expression and estrogen sensitivity may result from differential expression of ER subtypes in oral tissues. To test this hypothesis, we analyzed oral mucosal and salivary gland samples for ER and ER protein expression by immunohistochemistry from a cross-section of patients attending hospital for surgical problems of the head and neck. ER was not detected in oral buccal and gingival epithelium or in salivary glands. In contrast, ER was widely expressed at high levels in all oral tissues studied. Within these tissues, ER was observed primarily in keratinocytes and salivary gland acinar and ductal cells. Our results demonstrating the expression of only the ER subtype within oral tissues may explain the contradictory results from previous studies investigating ER expression in these tissues. Importantly, these results suggest that estrogens may act via ER in oral tissues and explain the effect of hormonal changes on the oral mucosa as well as on saliva secretion and composition.
Infection prevention in dentistry is an important topic that has gained more interest in recent years and guidelines for the prevention of cross-transmission are common practice in many countries. However, little is known about the real risks of cross-transmission, specifically in the dental healthcare setting. This paper evaluated the literature to determine the risk of cross-transmission and infection of viruses and bacteria that are of particular relevance in the dental practice environment. Facts from the literature on HSV, VZV, HIV, Hepatitis B, C and D viruses, Mycobacterium spp., Pseudomonas spp., Legionella spp. and multi-resistant bacteria are presented. There is evidence that Hepatitis B virus is a real threat for cross-infection in dentistry. Data for the transmission of, and infection with, other viruses or bacteria in dental practice are scarce. However, a number of cases are probably not acknowledged by patients, healthcare workers and authorities. Furthermore, cross-transmission in dentistry is under-reported in the literature. For the above reasons, the real risks of cross-transmission are likely to be higher. There is therefore a need for prospective longitudinal research in this area, to determine the real risks of cross-infection in dentistry. This will assist the adoption of effective hygiene procedures in dental practice.
Tick-borne encephalitis virus (TBEV) is a member of the family Flaviviridae. It is transmitted by Ixodes spp. ticks in a cycle involving rodents and small mammals. TBEV has three subtypes: European, Siberian and Far Eastern. The virus causes thousands of cases of meningoencephalitis in Europe annually, with an increasing trend. The increase may be attributed to a complex network of elements, including climatic, environmental and socio-economic factors. In an attempt to understand the evolutionary history and dispersal of TBEV, to existing genetic data we add two novel complete ORF sequences of TBEV strains from northern Europe and the completion of the genome of four others. Moreover, we provide a unique measure for the natural rate of evolution of TBEV by studying two isolations from the same forest on an island in Å land archipelago 44 years apart. For all isolates, we analysed the phylogeny, rate of evolution and probable time of radiation of the different TBEV strains. The results show that the two lineages of TBEV in different Ixodes species have evolved independently for approximately 3300 years. Notably, rapid radiation of TBEV-Eur occurred approximately 300 years ago, without the large-scale geographical clustering observed previously for the Siberian subtype. The measurements from the natural rate of evolution correlated with the estimates done by phylogenetic programs, demonstrating their robustness.
sICAM-5 is cleaved from CNS into CSF during acute encephalitis, and it may mediate leukocyte--neuron interactions. sICAM-5 release from cerebral neurons may actively regulate immune responses and leukocyte adhesion during microbial neuroinvasion in humans during encephalitis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.