Lactate, the end product of anaerobic glycolysis, is produced in high amounts by innate immune cells during inflammatory activation. Although immunomodulating effects of lactate have been reported, evidence from human studies is scarce. Here we show that expression of genes involved in lactate metabolism and transport is modulated in human immune cells during infection and upon inflammatory activation with TLR ligands in vitro, indicating an important role for lactate metabolism in inflammation. Extracellular lactate induces metabolic reprogramming in innate immune cells, as evidenced by reduced glycolytic and increased oxidative rates of monocytes immediately after exposure to lactate. A short-term infusion of lactate in humans in vivo increased ex vivo glucose consumption of PBMCs, but effects on metabolic rates and cytokine production were limited. Interestingly, long-term treatment with lactate ex vivo, reflecting pathophysiological conditions in local microenvironments such as tumor or adipose tissue, significantly modulated cytokine production with predominantly anti-inflammatory effects. We found time- and stimuli-dependent effects of extracellular lactate on cytokine production, further emphasizing the complex interplay between metabolism and immune cell function. Together, our findings reveal lactate as a modulator of immune cell metabolism which translates to reduced inflammation and may ultimately function as a negative feedback signal to prevent excessive inflammatory responses.
Severe hypoglycemic events have been associated with increased cardiovascular mortality in patients with diabetes, which may be explained by hypoglycemia-induced inflammation. We used ex vivo stimulations of peripheral blood mononuclear cells (PBMCs) and monocytes obtained during hyperinsulinemic-euglycemic (5.0 mmol/L)-hypoglycemic (2.6 mmol/L) clamps in 11 healthy participants, 10 patients with type 1 diabetes and normal awareness of hypoglycemia (NAH), and 10 patients with type 1 diabetes and impaired awareness (IAH) to test whether the composition and inflammatory function of immune cells adapt to a more proinflammatory state after hypoglycemia. Hypoglycemia increased leukocyte numbers in healthy control participants and patients with NAH but not in patients with IAH. Leukocytosis strongly correlated with the adrenaline response to hypoglycemia. Ex vivo, PBMCs and monocytes displayed a more robust cytokine response to microbial stimulation after hypoglycemia compared with euglycemia, although it was less pronounced in patients with IAH. Of note, hypoglycemia increased the expression of markers of demargination and inflammation in PBMCs. We conclude that hypoglycemia promotes mobilization of specific leukocyte subsets from the marginal pool and induces proinflammatory functional changes in immune cells. Inflammatory responses were less pronounced in IAH, indicating that counterregulatory hormone responses are key modulators of hypoglycemia-induced proinflammatory effects. Hypoglycemia-induced proinflammatory changes may promote a sustained inflammatory state.
It is unclear whether cerebral blood flow responses to hypoglycemia are altered in people with type 1 diabetes and impaired awareness of hypoglycemia. The aim of this study was to investigate the effect of hypoglycemia on both global and regional cerebral blood flow in type 1 diabetes patients with impaired awareness of hypoglycemia, type 1 diabetes patients with normal awareness of hypoglycemia and healthy controls ( n = 7 per group). The subjects underwent a hyperinsulinemic euglycemic-hypoglycemic glucose clamp in a 3 T MR system. Global and regional changes in cerebral blood flow were determined by arterial spin labeling magnetic resonance imaging, at the end of both glycemic phases. Hypoglycemia generated typical symptoms in patients with type 1 diabetes and normal awareness of hypoglycemia and healthy controls, but not in patients with impaired awareness of hypoglycemia. Conversely, hypoglycemia increased global cerebral blood flow in patients with impaired awareness of hypoglycemia, which was not observed in the other two groups. Regionally, hypoglycemia caused a redistribution of cerebral blood flow towards the thalamus of both patients with normal awareness of hypoglycemia and healthy controls, consistent with activation of brain regions associated with the autonomic response to hypoglycemia. No such redistribution was found in the patients with impaired awareness of hypoglycemia. An increase in global cerebral blood flow may enhance nutrient supply to the brain, hence suppressing symptomatic awareness of hypoglycemia. Altogether these results suggest that changes in cerebral blood flow during hypoglycemia contribute to impaired awareness of hypoglycemia.
Hypoglycemia is the most frequent complication of insulin therapy in patients with type 1 diabetes. Since the brain is reliant on circulating glucose as its main source of energy, hypoglycemia poses a threat for normal brain function. Paradoxically, although hypoglycemia commonly induces immediate decline in cognitive function, long-lasting changes in brain structure and cognitive function are uncommon in patients with type 1 diabetes. In fact, recurrent hypoglycemia initiates a process of habituation that suppresses hormonal responses to and impairs awareness of subsequent hypoglycemia, which has been attributed to adaptations in the brain. These observations sparked great scientific interest into the brain’s handling of glucose during (recurrent) hypoglycemia. Various neuroimaging techniques have been employed to study brain (glucose) metabolism, including PET, fMRI, MRS and ASL. This review discusses what is currently known about cerebral metabolism during hypoglycemia, and how findings obtained by functional and metabolic neuroimaging techniques contributed to this knowledge.
Brain lactate may be involved in the development of impaired awareness of hypoglycemia (IAH), a condition that affects approximately 25% of patients with type 1 diabetes and increases the risk of severe hypoglycemia. The aim of this study was to investigate the effect of acute hypoglycemia on brain lactate concentration in patients with IAH as compared with those with normal awareness of hypoglycemia (NAH) and healthy control subjects (n = 7 per group). After an overnight fast, all subjects underwent a two-step hyperinsulinemic euglycemic (5.0 mmol/L)-hypoglycemic (2.8 mmol/L) glucose clamp. Brain lactate concentrations were measured continuously with 1 H-MRS using a specific lactate detection method. Hypoglycemia generated symptoms in patients with NAH and healthy control subjects but not in patients with IAH. Brain lactate fell significantly by ∼20% in response to hypoglycemia in patients with type 1 diabetes with IAH but remained stable in both healthy control subjects and in patients with NAH. The fall in brain lactate is compatible with increased brain lactate oxidation providing an alternative fuel source during hypoglycemia, which may contribute to the impaired detection of hypoglycemia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.