We conclude that subtle variations in mAb sequence greatly affect responses towards low-pH incubation and subsequent neutralization, and demonstrate how orthogonal biophysical methods distinguish between reversible and irreversible mAb aggregation pathways at early stages of acidic treatment.
In this study, a unique set of antibody Fab fragments was designed in silico and produced to examine the relationship between protein surface properties and selectivity in multimodal chromatographic systems. We hypothesized that multimodal ligands containing both hydrophobic and charged moieties would interact strongly with protein surface regions where charged groups and hydrophobic patches were in close spatial proximity. Protein surface property characterization tools were employed to identify the potential multimodal ligand binding regions on the Fab fragment of a humanized antibody and to evaluate the impact of mutations on surface charge and hydrophobicity. Twenty Fab variants were generated by site-directed mutagenesis, recombinant expression, and affinity purification. Column gradient experiments were carried out with the Fab variants in multimodal, cation-exchange, and hydrophobic interaction chromatographic systems. The results clearly indicated that selectivity in the multimodal system was different from the other chromatographic modes examined. Column retention data for the reduced charge Fab variants identified a binding site comprising light chain CDR1 as the main electrostatic interaction site for the multimodal and cation-exchange ligands. Furthermore, the multimodal ligand binding was enhanced by additional hydrophobic contributions as evident from the results obtained with hydrophobic Fab variants. The use of in silico protein surface property analyses combined with molecular biology techniques, protein expression, and chromatographic evaluations represents a previously undescribed and powerful approach for investigating multimodal selectivity with complex biomolecules.
While quantitative structure activity relationship (QSAR) models have been employed successfully for the prediction of small model protein chromatographic behavior, there have been few reports to date on the use of this methodology for larger, more complex proteins. Recently our group generated focused libraries of antibody Fab fragment variants with different combinations of surface hydrophobicities and electrostatic potentials, and demonstrated that the unique selectivities of multimodal resins can be exploited to separate these Fab variants. In this work, results from linear salt gradient experiments with these Fabs were employed to develop QSAR models for six chromatographic systems, including multimodal (Capto MMC, Nuvia cPrime, and two novel ligand prototypes), hydrophobic interaction chromatography (HIC; Capto Phenyl), and cation exchange (CEX; CM Sepharose FF) resins. The models utilized newly developed "local descriptors" to quantify changes around point mutations in the Fab libraries as well as novel cluster descriptors recently introduced by our group. Subsequent rounds of feature selection and linearized machine learning algorithms were used to generate robust, well-validated models with high training set correlations (R > 0.70) that were well suited for predicting elution salt concentrations in the various systems. The developed models then were used to predict the retention of a deamidated Fab and isotype variants, with varying success. The results represent the first successful utilization of QSAR for the prediction of chromatographic behavior of complex proteins such as Fab fragments in multimodal chromatographic systems. The framework presented here can be employed to facilitate process development for the purification of biological products from product-related impurities by in silico screening of resin alternatives. Biotechnol. Bioeng. 2017;114: 1231-1240. © 2016 Wiley Periodicals, Inc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.