Subjective tinnitus, the perception of sound in the absence of any sound source, is routinely assessed using questionnaires. The subjective nature of these tools hampers objective evaluation of tinnitus presence, severity and treatment effects. Late auditory evoked potentials (LAEPs) might be considered as a potential biomarker for assessing tinnitus complaints. Using a multivariate meta-analytic model including data from twenty-one studies, we determined the LAEP components differing systematically between tinnitus patients and controls. Results from this model indicate that amplitude of the P300 component is lower in tinnitus patients (standardized mean difference (SMD) = -0.83, p < 0.01), while latency of this component is abnormally prolonged in this population (SMD = 0.97, p < 0.01). No other investigated LAEP components were found to differ between tinnitus and non-tinnitus subjects. Additional sensitivity analyses regarding differences in experimental conditions confirmed the robustness of these results. Differences in age and hearing levels between the two experimental groups might have a considerable impact on LAEP outcomes and should be carefully considered in future studies. Although we established consistent differences in the P300 component between tinnitus patients and controls, we could not identify any evidence that this component might covary with tinnitus severity. We conclude that out of several commonly assessed LAEP components, only the P300 can be considered as a potential biomarker for subjective tinnitus, although more research is needed to determine its relationship with subjective tinnitus measures. Future trials investigating experimental tinnitus therapies should consider including P300 measurements in the evaluation of treatment effect.
BackgroundTinnitus is a common symptom, affecting about 10–15% of the adult population. When input from the somatosensory system can influence and/or elicit tinnitus, this type of subjective tinnitus is called somatosensory tinnitus. Recently, a new type of bimodal neurostimulation treatment has shown promising results for a specific subgroup within the somatosensory tinnitus population. It is, however, not clear if this bimodal stimulation is also effective in patients with other types of subjective tinnitus.AimThe aim of this study was to evaluate the feasibility and efficacy of non-invasive bimodal auditory-somatosensory stimulation in reducing tinnitus severity among a general population of people with subjective tinnitus.MethodsChronic subjective tinnitus patients were recruited from the ENT department of the Antwerp University Hospital. Somatosensory stimulation was delivered by Transcutaneous Electrical Nerve Stimulation (TENS), and it was combined with auditory stimulation via headphones. The therapy comprised six sessions of thirty minutes twice a week for a period of 3 consecutive weeks. Follow up measurements were scheduled 9–12 weeks after the last treatment session. The change of the Tinnitus Functional Index (TFI) score, a questionnaire evaluating tinnitus burden and effects on the quality of life, was the primary outcome measure.ResultsTwenty-nine patients were enrolled in the study. A linear mixed-effects model was used to analyze the efficacy of bimodal treatment. The results of this analysis showed a statistically significant decrease (by 6, 9 points) in average TFI score at the follow up visit when compared to baseline. The ability to modulate tinnitus did not have an influence on the treatment results.ConclusionOur study showed that bimodal stimulation is a feasible and safe method of tinnitus treatment. The method might be an effective treatment for some participants with tinnitus, especially those who have accompanying neck/temporomandibular problems, although, the evidence from this trial is quite weak. Additional research is needed toward establishing the optimal treatment protocol, as well as selecting the most appropriate inclusion criteria.
Background Chronic tinnitus is a highly prevalent symptom, with many patients reporting considerable effects of tinnitus on quality of life. No clear evidence-based treatment options are currently available. While counseling-based methods are valuable in some cases, they are not sufficiently effective for all tinnitus patients. Neuromodulation techniques such as high-definition transcranial direct current stimulation (HD-tDCS) are proposed to have positive effects on tinnitus severity but, to date, these effects have not been proven conclusively. The proposed trial will investigate the hypothesis that chronic tinnitus patients receiving HD-tDCS will report a positive effect on the impact of tinnitus on daily life, as compared to patients receiving sham stimulation. Methods This study proposes a randomized, double-blind, placebo-controlled trial with parallel group design. A total of 100 chronic tinnitus patients will be randomly allocated to an experimental group or a sham group, with allocation stratified according to gender and tinnitus severity. Patient and researcher will be blinded to the patient’s allocation. Patients will undergo six sessions of sequential dual-site HD-tDCS of the left temporal area and the right dorsolateral prefrontal cortex. Evaluations will take place at baseline, immediately following treatment, and at three and six months after the start of the therapy. The primary outcome measure is the change in Tinnitus Functional Index (TFI) score. Secondary outcome measures include audiological measurements, cortical auditory evoked potentials, the Repeatable Battery for the Assessment of Neuropsychological Status adjusted for hearing-impaired individuals (RBANS-H), and supplementary questionnaires probing tinnitus severity and additional symptoms. By use of a linear regression model, the effects of HD-tDCS compared to sham stimulation will be assessed. Discussion The objective of this study is to evaluate whether HD-tDCS can reduce the impact of tinnitus on daily life in chronic tinnitus patients. To date, published trials on the effects of HD-tDCS on tinnitus suffer from a lack of standardization and few randomized controlled trials exist. The proposed study will be the first adequately powered trial to investigate the effects of sequential dual-site HD-tDCS on tinnitus severity. Trial registration ClinicalTrials.gov, NCT03754127 . Registered on 22 November 2018. Electronic supplementary material The online version of this article (10.1186/s13063-019-3594-y) contains supplementary material, which is available to authorized users.
Transcranial direct current stimulation (tDCS) has been proposed as a potential intervention for subjective tinnitus, but supporting evidence remains limited. We aimed to investigate the effect of anodal high-definition tDCS of the left temporal area and right dorsolateral prefrontal cortex on tinnitus severity. This double-blind randomized controlled trial included 77 patients (age range 18–79, 43 male) with chronic subjective tinnitus as their primary complaint. Thirty-eight subjects received six consecutive sessions of dual-site sequential high-definition-tDCS with electrodes positioned over the left temporal area and right dorsolateral prefrontal cortex. Both areas were stimulated for 15 min per session, with total stimulation time amounting to 30 min. Thirty-nine subjects received sham stimulation. The primary outcome measure was the change in tinnitus severity, as evaluated by the Tinnitus Functional Index, from baseline to a follow-up visit at 8 ± 2 weeks after treatment completion. Secondary outcomes included changes in perceived tinnitus loudness, as measured with a visual analogue scale and a tinnitus matching procedure, as well as scores on the Hospital Anxiety and Depression Scale, and the Hyperacusis Questionnaire. No differences in Tinnitus Functional Index change scores were identified between the active treatment and sham control groups (linear regression: P = 0.86). The Tinnitus Functional Index scores decreased significantly over time in both groups (P = 0.0012), indicating the presence of a considerable placebo effect. These change scores were significantly influenced by sex (linear regression: P = 0.037) and baseline symptoms of anxiety (linear regression: P = 0.049) in both groups. In general, Tinnitus Functional Index scores decreased more profoundly in males and in subjects with a higher degree of anxiety at baseline. None of the included secondary measures differed significantly between experimental arms. Our results suggest that dual-site sequential high-definition-tDCS of the left temporal area and right dorsolateral prefrontal cortex does not alleviate tinnitus severity. Interestingly, in our study population, fluctuations in tinnitus severity were influenced by gender and concurrent mental condition. It is therefore important to take these factors into account when conducting or planning randomized controlled trials in tinnitus populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.