Germ-line mutations in BRCA1 predispose to breast and ovarian cancer. BRCA1-mutated tumors show genomic instability, mainly as a consequence of impaired recombinatorial DNA repair. Here we identify 53BP1 as an essential factor for sustaining the growth arrest induced by Brca1 deletion. Depletion of 53BP1 abrogates the ATM-dependent checkpoint response and G2 cell cycle arrest triggered by the accumulation of DNA breaks in Brca1-deleted cells. This effect of 53BP1 is specific to BRCA1 function, as 53BP1 depletion did not alleviate proliferation arrest or checkpoint responses in Brca2-deleted cells. Importantly, loss of 53BP1 partially restores the homologous recombination defect of Brca1-deleted cells and reverts their hypersensitivity to DNA-damaging agents. We find reduced 53BP1 expression in subsets of sporadic triple-negative and BRCA-associated breast cancers, indicating the potential clinical implications of our findings.
Metastatic disease is the primary cause of death in breast cancer, the most common malignancy in Western women. Loss of E-cadherin is associated with tumor metastasis, as well as with invasive lobular carcinoma (ILC), which accounts for 10%-15% of all breast cancers. To study the role of E-cadherin in breast oncogenesis, we have introduced conditional E-cadherin mutations into a mouse tumor model based on epithelium-specific knockout of p53. Combined loss of E-cadherin and p53 resulted in accelerated development of invasive and metastatic mammary carcinomas, which show strong resemblance to human ILC. Moreover, loss of E-cadherin induced anoikis resistance and facilitated angiogenesis, thus promoting metastatic disease. Our results suggest that loss of E-cadherin contributes to both mammary tumor initiation and metastasis.
Women carrying germ-line mutations in BRCA1 are strongly predisposed to developing breast cancers with characteristic features also observed in sporadic basal-like breast cancers. They appear as high-grade tumors with high proliferation rates and pushing borders. On the molecular level, they are negative for hormone receptors and ERBB2, display frequent TP53 mutations, and express basal epithelial markers. To study the role of BRCA1 and P53 loss of function in breast cancer development, we generated conditional mouse models with tissue-specific mutation of Brca1 and/or p53 in basal epithelial cells. Somatic loss of both BRCA1 and p53 resulted in the rapid and efficient formation of highly proliferative, poorly differentiated, estrogen receptor-negative mammary carcinomas with pushing borders and increased expression of basal epithelial markers, reminiscent of human basal-like breast cancer. BRCA1-and p53-deficient mouse mammary tumors exhibit dramatic genomic instability, and their molecular signatures resemble those of human BRCA1-mutated breast cancers. Thus, these tumors display important hallmarks of hereditary breast cancers in BRCA1-mutation carriers.mouse models ͉ conditional knockout G erm-line mutations in the human breast cancer susceptibility gene BRCA1 are responsible for 40% to 50% of hereditary breast cancers and confer increased risk for development of ovarian, colon, and prostate cancers (1, 2). BRCA1 has been implicated in various cellular processes, including maintenance of genome integrity, DNA replication and repair, chromatin remodeling, and transcriptional regulation (3, 4). Although the exact mechanism of mammary tumor suppression by BRCA1 remains largely unknown, cells with dysfunctional BRCA1 show defects in survival and proliferation, increased radiosensitivity, chromosomal abnormalities, G 2 /M checkpoint loss, and impaired homologous recombination repair (5).BRCA1-mutated breast cancers that arise in women with germline mutations in BRCA1 are high-grade, hormone receptornegative breast carcinomas with frequent mutation of TP53 (4, 6). They also possess a basal-like phenotype as defined by the expression of markers that are typical for basal/myoepithelial cells, such as the basal cytokeratins (CKs) CK5/6 and CK14 (7). Indeed, strong molecular similarities are observed between hereditary BRCA1-mutated breast cancers and sporadic basal-like breast carcinomas (8,9). This phenotypic overlap has led to the hypothesis that sporadic basal-like cancers may have defects in BRCA1-related pathways, such as the amplification of EMSY and the methylation of BRCA1 and FANCF (10).Despite the fact that several mouse strains with conventional or conditional mutations in Brca1 have been generated (11), no good mouse model for BRCA1-mutated basal-like breast cancer has been developed so far. Most conventional Brca1 knockouts are embryonic-lethal when bred to homozygosity, yet heterozygous ⌬11 allele, which encodes BRCA1-⌬11, a naturally occurring splice variant of Brca1 (19). Mouse mammary tumor models ba...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.