Posttranslational proteolytic processing of chemokines is a natural mechanism to regulate inflammation. In this study, we describe modification of the CXC chemokine stromal cell-derived factor 1α/CXCL12 by peptidylarginine deiminase (PAD) that converts arginine residues into citrulline (Cit), thereby reducing the number of positive charges. The three NH2-terminal arginines of CXCL12, Arg8, Arg12, and Arg20, were citrullinated upon incubation with PAD. The physiologic relevance of citrullination was demonstrated by showing coexpression of CXCL12 and PAD in Crohn’s disease. Three CXCL12 isoforms were synthesized for biologic characterization: CXCL12-1Cit, CXCL12-3Cit, and CXCL12-5Cit, in which Arg8, Arg8/Arg12/Arg20, or all five arginines were citrullinated, respectively. Replacement of only Arg8 caused already impaired (30-fold reduction) CXCR4 binding and signaling (calcium mobilization, phosphorylation of ERK and protein kinase B) properties. Interaction with CXCR4 was completely abolished for CXCL12-3Cit and CXCL12-5Cit. However, the CXCR7-binding capacities of CXCL12-1Cit and CXCL12-3Cit were, respectively, intact and reduced, whereas CXCL12-5Cit failed to bind CXCR7. In chemotaxis assays with lymphocytes and monocytes, CXCL12-3Cit and CXCL12-5Cit were completely devoid of activity, whereas CXCL12-1Cit, albeit at higher concentrations than CXCL12, induced migration. The antiviral potency of CXCL12-1Cit was reduced compared with CXCL12 and CXCL12-3Cit and CXCL12-5Cit (maximal dose 200 nM) could not inhibit infection of lymphocytic MT-4 cells with the HIV-1 strains NL4.3 and HE. In conclusion, modification of CXCL12 by one Cit severely impaired the CXCR4-mediated biologic effects of this chemokine and maximally citrullinated CXCL12 was inactive. Therefore, PAD is a potent physiologic down-regulator of CXCL12 function.
Chronic inflammation may increase the risk to develop cancer, for instance esophagitis or gastritis may lead to development of esophageal or gastric cancer, respectively. The key molecules attracting leukocytes to local inflammatory sites are chemokines. We here provide a systematic review on the impact of CXC chemokines (binding the receptors CXCR1, CXCR2, CXCR3 and CXCR4) on the transition of chronic inflammation in the upper gastrointestinal tract to neoplasia. CXCR2 ligands, including GRO-α,β,γ/CXCL1,2,3, ENA-78/CXCL5 and IL-8/CXCL8 chemoattract pro-tumoral neutrophils. In addition, angiogenic CXCR2 ligands stimulate the formation of new blood vessels, facilitating tumor progression. The CXCR4 ligand SDF-1/CXCL12 also promotes tumor development by stimulating angiogenesis and by favoring metastasis of CXCR4-positive tumor cells to distant organs producing SDF-1/CXCL12. Furthermore, these angiogenic chemokines also directly enhance tumor cell survival and proliferation. In contrast, the CXCR3 ligands Mig/CXCL9, IP-10/ CXCL10 and I-TAC/CXCL11 are angiostatic and attract anti-tumoral T lymphocytes and may therefore mediate tumor growth retardation and regression. Thus, chemokines exert diverging, sometimes dual roles in tumor biology as described for esophageal and gastric cancer. Therefore extensive research is needed to completely unravel the complex chemokine code in specific cancers. Possibly, chemokine-targeted cancer therapy will have to be adapted to the individual's chemokine profile.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.