Objective: Peripherally inserted central catheters are a popular means of obtaining central venous access in critically ill patients. However, there is limited data regarding the rapidity of the peripherally inserted central catheter procedure in the presence of acute illness or obesity, both of which may impede central venous catheter placement. We aimed to determine the feasibility, safety, and duration of peripherally inserted central catheter placement in critically ill patients, including obese patients and patients in shock. Methods: This retrospective cohort study was performed using data on 55 peripherally inserted central catheters placed in a 30-bed multidisciplinary intensive care unit in Mayo Clinic Hospital, Phoenix, Arizona. Information on the time required to complete each step of the peripherally inserted central catheter procedure, associated complications, and patient characteristics was obtained from a prospectively assembled internal quality assurance database created through random convenience sampling. Results: The Median Procedure Time, beginning with the first needle puncture and ending when the procedure is complete, was 14 (interquartile range: 9–20) min. Neither critical illness nor obesity resulted in a statistically significant increase in the time required to complete the peripherally inserted central catheter procedure. Three (5.5%) minor complications were observed. Conclusion: Critical illness and obesity do not delay the acquisition of vascular access when placing a peripherally inserted central catheter. Concerns of delayed vascular access in critically ill patients should not deter a physician from selecting a peripherally inserted central catheter to provide vascular access when it would otherwise be appropriate.
Extracorporeal membrane oxygenation (ECMO) for severe acute respiratory failure was proposed more than 40 years ago. Despite the publication of the ARDSNet study and adoption of lung protective ventilation, the mortality for acute respiratory failure due to acute respiratory distress syndrome has continued to remain high. This technology has evolved over the past couple of decades and has been noted to be safe and successful, especially during the worldwide H1N1 influenza pandemic with good survival rates. The primary indications for ECMO in acute respiratory failure include severe refractory hypoxemic and hypercarbic respiratory failure in spite of maximum lung protective ventilatory support. Various triage criteria have been described and published. Contraindications exist when application of ECMO may be futile or technically impossible. Knowledge and appreciation of the circuit, cannulae, and the physiology of gas exchange with ECMO are necessary to ensure lung rest, efficiency of oxygenation, and ventilation as well as troubleshooting problems. Anticoagulation is a major concern with ECMO, and the evidence is evolving with respect to diagnostic testing and use of anticoagulants. Clinical management of the patient includes comprehensive critical care addressing sedation and neurologic issues, ensuring lung recruitment, diuresis, early enteral nutrition, treatment and surveillance of infections, and multisystem organ support. Newer technology that delinks oxygenation and ventilation by extracorporeal carbon dioxide removal may lead to ultra-lung protective ventilation, avoidance of endotracheal intubation in some situations, and ambulatory therapies as a bridge to lung transplantation. Risks, complications, and long-term outcomes and resources need to be considered and weighed in before widespread application. Ethical challenges are a reality and a multidisciplinary approach that should be adopted for every case in consideration.
Inter-facility transport of a critically ill patient with Acute Respiratory Distress Syndrome (ARDS) may be necessary for a higher level of care and/or initiation of extracorporeal membrane oxygenation (ECMO). During the COVID19 pandemic, ECMO has been used for patients with severe ARDS with successful results. Transporting a patient after ECMO cannulation by the receiving facility brings forth logistic challenges including availability of adequate Personal Protective Equipment (PPE) for the transport team and hospital capacity management issues. We report our designated ECMO transport team’s experience with five patients with COVID19 associated severe ARDS after cannulation at the referring facility. Focusing on transport associated logistics, creation of checklists, and collaboration with EMS partners is necessary for safe and good outcomes for patients while maintaining team safety.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.