CMV can infect dendritic cells (DCs), and direct Ag presentation could, therefore, lead to the priming of CMV-specific CD8+ T cells. However, CMV-encoded immune evasins severely impair Ag presentation in the MHC class I pathway; thus, it is widely assumed that cross-presentation drives the priming of antiviral T cells. We assessed the contribution of direct versus cross priming in mouse CMV (MCMV) infection using recombinant viruses. DCs infected with an MCMV strain encoding the gB498 epitope from HSV-1 were unable to stimulate in vitro naive gB498-specific CD8+ T cells from TCR transgenic mice. Infection of C57BL/6 mice with this recombinant virus led, however, to the generation of abundant numbers of gB498-specific T cells in vivo. Of the DC subsets isolated from infected mice, only CD8α+ DCs were able to stimulate naive T cells, suggesting that this DC subset cross-presents MCMV-encoded Ag in vivo. Upon infection of mice with MCMV mutants encoding Ag that can either be well or hardly cross-presented, mainly CD8+ T cells specific for cross-presented epitopes were generated. Moreover, even in the absence of immune evasion genes interfering with MHC class I–mediated Ag presentation, priming of T cells to Ag that can only be presented directly was not observed. We conclude that the host uses mainly DCs capable of cross-presentation to induce the CMV-specific CD8+ T cell response during primary, acute infection and discuss the implications for the development of a CMV vaccine.
The productive replication of human immunodeficiency virus type 1 (HIV-1) occurs exclusively in defined cells of human or chimpanzee origin, explaining why heterologous animal models for HIV replication, pathogenesis, vaccination, and therapy are not available. This lack of an animal model for HIV-1 studies prompted us to examine the susceptibility of feline cells in order to evaluate the cat (Felis catus) as an animal model for studying HIV-1. Here, we report that feline cell lines harbor multiple restrictions with respect to HIV-1 replication. The feline CD4 receptor does not permit virus infection. Feline T-cell lines MYA-1 and FeT-1C showed postentry restrictions resulting in low HIV-1 luciferase reporter activity and low expression of viral Gag-Pol proteins when pseudotyped vectors were used. Feline fibroblastic CrFK and KE-R cells, expressing human CD4 and CCR5, were very permissive for viral entry and HIV-long terminal repeat-driven expression but failed to support spreading infection. KE-R cells displayed a profound block with respect to release of HIV-1 particles. In contrast, CrFK cells allowed very efficient particle production; however, the CrFK cellderived HIV-1 particles had low specific infectivity. We subsequently identified feline apolipoprotein B-editing catalytic polypeptide 3 (feAPOBEC3) proteins as active inhibitors of HIV-1 particle infectivity. CrFK cells express at least three different APOBEC3s: APOBEC3C, APOBEC3H, and APOBEC3CH. While the feAPOBEC3C did not significantly inhibit HIV-1, the feAPOBEC3H and feAPOBEC3CH induced G to A hypermutations of the viral cDNA and reduced the infectivity ϳ10-to ϳ40-fold.Like many retroviruses, human immunodeficiency virus type 1 (HIV-1) has a very limited host range; spreading replication is seen only in Homo sapiens and by artificial inoculation in the close relative the chimpanzee (Pan troglodytes) (2, 16), preventing the setup of an efficient small animal model for HIV-1 research. Many reasons argue against the widespread use of chimpanzees in research, including the ethical problems involved in the use of an endangered species, budgetary problems, and the very low induction of simian AIDS either from HIV-1 or its ancestor simian immunodeficiency virus cpz (SIVcpz) in infected chimpanzees (25,26,30,57,58,60,63).In general, the tropism of HIV-1 in human tissue is determined by the expression of its receptor protein CD4 together with CCR5 or CXCR4 chemokine receptors. Simian CD4 but not murine CD4 supports entry of HIV-1 (15, 33). HIV-1 entry through receptor-mediated membrane fusion is required for reverse transcription of the viral genomic RNA into a doublestranded DNA molecule. Murine T cells show early postentry restriction of HIV-1 at reverse transcription (3). In simian cells, a related restriction of HIV-1, but not of SIVs (5, 10, 53), involves the simian TRIM5␣ protein, which leads to increased viral uncoating and thereby suppresses reverse transcription (73). Since HIV-1 does not show spreading replication in nonhuman cells, cell type-and t...
The property of DC to generate effective CTL responses is influenced by TLR signaling. TLR ligands contain molecular signatures associated with pathogens, have an impact on the antigen processing and presentation by DC, and are being exploited as potential adjuvants. We hypothesized that the TLR2/6 heterodimer agonist S-[2,3-bispalmitoyiloxy-(2R)-propyl]-R-cysteinyl-amido-monomethoxyl polyethylene glycol (BPP), a synthetic derivative of the Mycoplasma macrophage activating lipopeptide-2, is a potent adjuvant for cross-priming against cellular antigens. Systemic administration of BPP-induced maturation of CD8a 1 DC and CD8aÀ DC in the spleen and resulted in enhanced cross-presentation of intravenously co-administered antigen in mice. In addition, administration of BPP and cell-associated OVA generated an effective CTL response against OVA in vivo in a CD4 1 T helper celldependent manner, but independent of IFN-a. Delivering antigenic peptides directly linked to BPP led to superior CTL immunity as compared to giving antigens and adjuvants admixed. In contrast to other TLR ligands, such as CpG, systemic activation of DC with BPP did not result in shut-down of antigen presentation by splenic DC subsets, although cross-priming against subsequently encountered antigens was reduced. Together, our data provide evidence that BPP is a potent stimulus to generate CTL via cross-priming.
CpG-containing oligonucleotides (CpG) have been shown to reduce key features of allergic airway inflammation in mouse models. Given the inhibitory effects of CpG treatment on Ag presentation of subsequently encountered Ags via MHC class I and II molecules by dendritic cells (DC), we hypothesized that intranasal CpG treatment would lead to reduced Ag-specific T cell stimulation in the lung-draining lymph nodes, thereby reducing the inflammatory response in sensitized mice. Intranasal CpG administration led to phenotypic maturation of lung and mediastinal lymph node DC as determined by expression of MHC class II, CD80, and CD86. This was accompanied by a significant reduction in the proliferation of adoptively transferred Ag-specific CD4+ and CD8+ T cells in mediastinal lymph nodes, when CpG was given before inhalative OVA challenges. DC obtained from mediastinal lymph nodes of CpG-treated mice before OVA inhalation led to reduced T cell stimulation via MHC class I and II molecules. In addition, CpG diminished airway eosinophilia and pulmonary infiltration after sensitization or following adoptive transfer of Ag-specific Th2 cells. These results were explained by reduced CCL21 expression and inhibition of lung DC migration following CpG administration, which could be restored by transfer of bone marrow-derived DC, because CpG had no major impact on the constitutive MHC class II Ag presentation of protein-derived Ag by lung tissue-derived DC. We conclude that CpG treatment can effectively impair the DC-mediated Ag transport from the lungs to the lymph nodes, resulting in reduced T cell activation and blunted airway inflammation.
During asthma, lung DC capture and process antigens to initiate and maintain allergic Th2 cell responses to inhaled allergens. The aim of the study was to investigate whether allergen-specific IgG, generated during sensitization, can potentiate the acute airway inflammation through Fcc receptor (FccR)-mediated antigen uptake and enhance antigen presentation resulting in augmented T-cell proliferation. We examined the impact of antigen presentation and T-cell stimulation on allergic airway hyperresponsiveness and inflammation using transgenic and gene-deficient mice. Both airway inflammation and eosinophilia in bronchoalveolar lavage fluid were markedly reduced in sensitized and challenged FccR-deficient mice. Lung DC of WT, but not FccR-deficient mice, induced increased antigen-specific CD4 1 T-cell proliferation when pulsed with anti-OVA IgG immune complexes. Intranasal application of anti-OVA IgG immune complexes resulted in enhanced airway inflammation, eosinophilia and Th2 cytokine release, mediated through enhanced antigen-specific T-cell proliferation in vivo. Finally, antigen-specific IgG in the serum of sensitized mice led to a significant increase of antigen-specific CD4 1 T-cell proliferation induced by WT, but not FccR-deficient, lung DC. We conclude that FccRmediated enhanced antigen presentation and T-cell stimulation by lung DC has a significant impact on inflammatory responses following allergen challenge in asthma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.