The most important complication in the treatment of hemophilia A patients today is the development of inhibitory antibodies against infused factor VIII (FVIII). Inhibitor development is caused by a complex interplay between both genetic and environmental factors. The risk of developing inhibitors is greatest in previously untreated patients with severe hemophilia A. Several genetic factors, such as a positive family history of inhibitors, ethnicity, FVIII genotype, and certain polymorphisms in immune modulatory genes, are associated with the risk of inhibitor development. Treatment-related factors, such as intensive treatment with FVIII for bleeds or surgery, are associated with a higher inhibitor risk. However, regular prophylaxis seems to have a protective effect on inhibitor development. Knowledge about the risk factors of inhibitor development is a condition for predicting and in the future possibly even preventing the development of inhibitors in patients with severe hemophilia A. This review summarizes the current knowledge on the potential risk factors of inhibitor development. At present, many uncertainties still remain that will require collaborative investigation.
SARS‐CoV‐2 contains a positive single‐stranded RNA genome of approximately 30 000 nucleotides. Within this genome, 15 RNA elements were identified as conserved between SARS‐CoV and SARS‐CoV‐2. By nuclear magnetic resonance (NMR) spectroscopy, we previously determined that these elements fold independently, in line with data from in vivo and ex‐vivo structural probing experiments. These elements contain non‐base‐paired regions that potentially harbor ligand‐binding pockets. Here, we performed an NMR‐based screening of a poised fragment library of 768 compounds for binding to these RNAs, employing three different 1H‐based 1D NMR binding assays. The screening identified common as well as RNA‐element specific hits. The results allow selection of the most promising of the 15 RNA elements as putative drug targets. Based on the identified hits, we derive key functional units and groups in ligands for effective targeting of the RNA of SARS‐CoV‐2.
We report here on the nuclear magnetic resonance (NMR) 19 F screening of 14 RNA targets with different secondary and tertiary structure to systematically assess druggability of RNAs. Our RNA targets include representative bacterial riboswitches that naturally bind with nanomolar affinity and high specificity to cellular metabolites of low molecular weight. Based on counter‐screens against five DNAs and five proteins, we can show that RNA can be specifically targeted. To demonstrate the quality of the initial fragment library that has been designed for easy follow‐up chemistry, we further show how to increase binding affinity from an initial fragment hit by chemistry that links the identified fragment to the intercalator acridine. Thus, we achieve low micromolar binding affinity without losing binding specificity between two different terminator structures.
SARS‐CoV‐2 contains a positive single‐stranded RNA genome of approximately 30 000 nucleotides. Within this genome, 15 RNA elements were identified as conserved between SARS‐CoV and SARS‐CoV‐2. By nuclear magnetic resonance (NMR) spectroscopy, we previously determined that these elements fold independently, in line with data from in vivo and ex‐vivo structural probing experiments. These elements contain non‐base‐paired regions that potentially harbor ligand‐binding pockets. Here, we performed an NMR‐based screening of a poised fragment library of 768 compounds for binding to these RNAs, employing three different 1H‐based 1D NMR binding assays. The screening identified common as well as RNA‐element specific hits. The results allow selection of the most promising of the 15 RNA elements as putative drug targets. Based on the identified hits, we derive key functional units and groups in ligands for effective targeting of the RNA of SARS‐CoV‐2.
SARS‐CoV‐2 (SCoV2) and its variants of concern pose serious challenges to the public health. The variants increased challenges to vaccines, thus necessitating for development of new intervention strategies including anti‐virals. Within the international Covid19‐NMR consortium, we have identified binders targeting the RNA genome of SCoV2. We established protocols for the production and NMR characterization of more than 80% of all SCoV2 proteins. Here, we performed an NMR screening using a fragment library for binding to 25 SCoV2 proteins and identified hits also against previously unexplored SCoV2 proteins. Computational mapping was used to predict binding sites and identify functional moieties (chemotypes) of the ligands occupying these pockets. Striking consensus was observed between NMR‐detected binding sites of the main protease and the computational procedure. Our investigation provides novel structural and chemical space for structure‐based drug design against the SCoV2 proteome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.