In-depth site-specific investigations of protein glycosylation are the basis for understanding the biological function of glycoproteins. Mass spectrometry-based N- and O-glycopeptide analyses enable determination of the glycosylation site, site occupancy, as well as glycan varieties present on a particular site. However, the depth of information is highly dependent on the applied analytical tools, including glycopeptide fragmentation regimes and automated data analysis. Here, we used a small set of synthetic disialylated, biantennary N-glycopeptides to systematically tune Q-TOF instrument parameters towards optimal energy stepping collision induced dissociation (CID) of glycopeptides. A linear dependency of m/z-ratio and optimal fragmentation energy was found, showing that with increasing m/z-ratio, more energy is required for glycopeptide fragmentation. Based on these optimized fragmentation parameters, a method combining lower- and higher-energy CID was developed, allowing the online acquisition of glycan and peptide-specific fragments within a single tandem MS experiment. We validated this method analyzing a set of human immunoglobulins (IgA1+2, sIgA, IgG1+2, IgE, IgD, IgM) as well as bovine fetuin. These optimized fragmentation parameters also enabled software-assisted glycopeptide assignment of both N- and O-glycopeptides including information about the most abundant glycan compositions, peptide sequence and putative structures. Twenty-six out of 30 N-glycopeptides and four out of five O-glycopeptides carrying >110 different glycoforms could be identified by this optimized LC-ESI tandem MS method with minimal user input. The Q-TOF based glycopeptide analysis platform presented here opens the way to a range of different applications in glycoproteomics research as well as biopharmaceutical development and quality control.Graphical AbstractᅟElectronic supplementary materialThe online version of this article (doi:10.1007/s13361-015-1308-6) contains supplementary material, which is available to authorized users.
Mass spectrometry (MS) is used to quantify the relative distribution of glycans attached to particular protein glycosylation sites (micro-heterogeneity) and evaluate the molar site occupancy (macro-heterogeneity) in glycoproteomics. However, the accuracy of MS for such quantitative measurements remains to be clarified. As a key step towards this goal, a panel of related tryptic peptides with and without complex, biantennary, disialylated N-glycans was chemically synthesised by solid-phase peptide synthesis. Peptides mimicking those resulting from enzymatic deglycosylation using PNGase F/A and endo D/F/H were synthetically produced, carrying aspartic acid and N-acetylglucosamine-linked asparagine residues, respectively, at the glycosylation site. The MS ionisation/detection strengths of these pure, well-defined and quantified compounds were investigated using various MS ionisation techniques and mass analysers (ESI-IT, ESI-Q-TOF, MALDI-TOF, ESI/MALDI-FT-ICR-MS). Depending on the ion source/mass analyser, glycopeptides carrying complex-type N-glycans exhibited clearly lower signal strengths (10-50% of an unglycosylated peptide) when equimolar amounts were analysed. Less ionisation/detection bias was observed when the glycopeptides were analysed by nano-ESI and medium-pressure MALDI. The position of the glycosylation site within the tryptic peptides also influenced the signal response, in particular if detected as singly or doubly charged signals. This is the first study to systematically and quantitatively address and determine MS glycopeptide ionisation/detection strengths to evaluate glycoprotein micro-heterogeneity and macro-heterogeneity by label-free approaches. These data form a much needed knowledge base for accurate quantitative glycoproteomics.
Differentiating the structure of isobaric glycopeptides represents a major challenge for mass spectrometry-based characterisation techniques. Here we show that the regiochemistry of the most common N-acetylneuraminic acid linkages of N-glycans can be identified in a site-specific manner from individual glycopeptides using ion mobility-mass spectrometry analysis of diagnostic fragment ions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.