Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the north, one in the south) for full sky coverage and will be operated as open observatory. The design of CTA is based on currently available technology. This document reports on the status and presents the major design concepts of CTA.
The Square Kilometre Array (SKA) will have a low frequency component (SKA-low) which has as one of its main science goals the study of the redshifted 21cm line from the earliest phases of star and galaxy formation in the Universe. This 21cm signal provides a new and unique window both on the time of the formation of the first stars and accreting black holes and the subsequent period of substantial ionization of the intergalactic medium. The signal will teach us fundamental new things about the earliest phases of structure formation, cosmology and even has the potential to lead to the discovery of new physical phenomena. Here we present a white paper with an Executive SummaryThe Square Kilometre Array (SKA) will have a low frequency component (AA-low/SKA-low 1 ) which has as one of its main science goals the study of the redshifted 21cm line from the earliest phases of star and galaxy formation in the Universe (see SKA Memo 125). It is during this phase that the first building blocks of the galaxies that we see around us today, including our own Milky Way, were formed. It is a crucial period for understanding the history of the Universe and one for which we have currently very little observational data.We divide the period into two different phases based on the physical processes which affect the Intergalactic Medium. The first period, which we call the Cosmic Dawn, saw the formation of the first stars and accreting black holes, which changed the quantum state of the still neutral Intergalactic Medium. The second period, known as the Epoch of Reionization, is the one during which large areas between the galaxies were photo-ionized by the radiation produced in galaxies and which ended when the Intergalactic Medium had become completely ionized.Observations of the redshifted 21-cm line with SKA will provide a new and unique window on the entire period of Cosmic Dawn and Reionization. The signal is sensitive to the emergence of the first stellar populations, radiation from growing massive black holes and the formation of larger groups of galaxies and bright quasars. At the same time it maps the distribution of most of the baryonic matter in the Universe. The study of the redshifted 21cm line will teach us fundamental new things about the earliest phases of structure formation and cosmology. It even has the potential to lead to the discovery of new physical phenomena. Here we present an overview of the science questions that SKA-low can address, how we plan to tackle these questions and what this implies for the basic design of the telescope.The redshifted 21cm signal will be analyzed with different techniques, which each come with their own requirements for the SKA: (i) Tomography, (ii) power-spectra and higher-order statistics, (iii) hydrogen absorption, (iv) global/total-intensity signal. Whereas all precursors/pathfinders aim to study the signal statistically through its power spectrum, SKA will be able to image the neutral hydrogen distribution directly and its focus will therefore be more on tomograph...
Abstract. Recent theoretical yields and chemical evolution models demonstrate that intermediate-mass AGB stars cannot reproduce the observed abundance distributions of O, Na, Mg, and Al. As a further observational test of this finding, we present elemental abundance ratios [X/Fe] for 20 elements in 38 bright giants of the globular cluster NGC 6752 based on highresolution, high signal-to-noise spectra obtained with UVES on the VLT. This is the most complete spectroscopic analysis of this cluster in terms of the number of elements considered and the number of stars in the sample. The stars span more than 1000 K in effective temperature and more than 3 visual magnitudes along the red giant branch.
The fraction of ionizing photons that escape (f esc ) from z 6 galaxies is an important parameter for assessing the role of these objects in the reionization of the universe, but the opacity of the intergalactic medium precludes a direct measurement of f esc for individual galaxies at these epochs. We argue that since f esc regulates the impact of nebular emission on the spectra of galaxies, it should nonetheless be possible to indirectly probe f esc well into the reionization epoch. As a first step, we demonstrate that by combining measurements of the rest-frame UV slope β with the equivalent width of the Hβ emission line, galaxies with very high Lyman continuum escape fractions (f esc 0.5) should be identifiable up to z ≈ 9 through spectroscopy with the upcoming James Webb Space Telescope (JWST). By targeting strongly lensed galaxies behind low-redshift galaxy clusters, JWST spectra of sufficiently good quality can be obtained for M 1500 −16.0 galaxies at z ≈ 7 and for M 1500 −17.5 galaxies at z ≈ 9. Dust-obscured star formation may complicate the analysis, but supporting observations with ALMA or the planned SPICA mission may provide useful constraints on this effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.