Wide softening zones are typical for welded joints of age hardened aluminium alloys. In this study, the microstructure evolution and distribution of mechanical properties resulting from welding processes of the aluminium alloy EN AW-6082 (AlSi1MgMn) was analysed by both in-situ and ex-situ investigations. The in-situ thermal analyses included differential scanning calorimetry (DSC), which was used to characterise the dissolution and precipitation behaviour in the heat affected zone (HAZ) of welded joints. Thermo-mechanical analysis (TMA) by means of compression tests was used to determine the mechanical properties of various states of the microstructure after the welding heat input. The necessary temperature–time courses in the HAZ for these methods were measured using thermocouples during welding. Additionally, ex-situ tensile tests were done both on specimens from the fusion zone and on welded joints, and their in-depth analysis with digital image correlation (DIC) accompanied by finite element simulations serve for the description of flow curves in different areas of the weld. The combination of these methods and the discussion of their results make an essential contribution to understand the influence of welding heat on the material properties, particularly on the softening behaviour. Furthermore, the distributed strength characteristic of the welded connections is required for an applicable estimation of the load-bearing capacity of welded aluminium structures by numerical methods.
In age-hardened high-strength aluminum alloys, the area with and around a joint has a large impact on the load-bearing capacity of a welded structure. Therefore, in this study the fracture behavior of welded EN AW 6082 T6 plates is investigated experimentally and numerically. From butt joints, smooth and notched tensile specimens as well as shear specimens have been manufactured and tested for the base material (BM), heat-affected zone (HAZ) and fusion zone (FZ). With numerical simulations of these tests, the dependency of the fracture strain on the stress triaxiality is determined, and two phenomenological fracture criteria are calibrated. Whereas the one-parameter Rice–Tracey/Cockcroft–Latham (RTCL) criterion describes the behavior of the tension specimens as accurately as the two-parameter Bao–Wierzbicki (BW) criterion, the BW criterion is more accurate for shear tests. Subsequently, the material model is validated on axial compression tests of welded X-profiles. The experiments comprise tests with different plate thicknesses (8 mm, 10 mm and 12 mm) and varying strain rates (up to 1/s locally), showing the same behavior for all specimens. After crack initiation within the FZ, coalescence of cracks leads to crack growth in axial direction and a subsequent reduction of the load-bearing capacity. This behavior is reproduced well by the numerical simulations with the BW criterion, whereas simulations with the RTCL criterion predict fracture initiation at too high displacements. Overall, the results show the strong influence of the ductility of the FZ on the crushing behavior of welded X-profiles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.