The growth of single hydrogen bubbles at micro-electrodes is studied in an acidic electrolyte over a wide range of concentrations and cathodic potentials. New bubble growth regimes have been identified...
Emerging manufacturing technologies make it possible to design the morphology of electrocatalysts on the nanoscale in order to improve their efficiency in electrolysis processes. The current work investigates the effects of electrodeattached hydrogen bubbles on the performance of electrodes depending on their surface morphology and wettability. Ni-based electrocatalysts with hydrophilic and hydrophobic nanostructures are manufactured by electrodeposition, and their surface properties are characterized. Despite a considerably larger electrochemically active surface area, electrochemical analysis reveals that the samples with more pronounced hydrophobic properties perform worse at industrially relevant current densities. High-speed imaging shows significantly larger bubble detachment radii with higher hydrophobicity, meaning that the electrode surface area that is blocked by gas is larger than the area gained by nanostructuring. Furthermore, a slight tendency toward bubble size reduction of 7.5% with an increase in the current density is observed in 1 M KOH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.