Several proteins have been linked to neurodegenerative disorders (NDDs), but their molecular function is not completely understood. Here, we used quantitative interaction proteomics to identify binding partners of Amyloid beta precursor protein (APP) and Presenilin-1 (PSEN1) for Alzheimer's disease (AD), Huntingtin (HTT) for Huntington's disease, Parkin (PARK2) for Parkinson's disease, and Ataxin-1 (ATXN1) for spinocerebellar ataxia type 1. Our network reveals common signatures of protein degradation and misfolding and recapitulates known biology. Toxicity modifier screens and comparison to genome-wide association studies show that interaction partners are significantly linked to disease phenotypes in vivo. Direct comparison of wild-type proteins and disease-associated variants identified binders involved in pathogenesis, highlighting the value of differential interactome mapping. Finally, we show that the mitochondrial protein LRPPRC interacts preferentially with an early-onset AD variant of APP. This interaction appears to induce mitochondrial dysfunction, which is an early phenotype of AD.
Polyglutamine (polyQ) diseases represent a neuropathologically heterogeneous group of disorders. The common theme of these disorders is an elongated polyQ tract in otherwise unrelated proteins. So far, only symptomatic treatment can be applied to patients suffering from polyQ diseases. Despite extensive research, the molecular mechanisms underlying polyQ-induced toxicity are largely unknown. To gain insight into polyQ pathology, we performed a large-scale RNAi screen in Drosophila to identify modifiers of toxicity induced by expression of truncated Ataxin-3 containing a disease-causing polyQ expansion. We identified various unknown modifiers of polyQ toxicity. Large-scale analysis indicated a dissociation of polyQ aggregation and toxicity.
Spinocerebellar ataxia type 3 (SCA3) is one of at least nine inherited neurodegenerative diseases caused by an expansion of a polyglutamine tract within corresponding diseasespecific proteins. In case of SCA3, mutation of Ataxin-3 results in aggregation of misfolded protein, formation of intranuclear as well as cytosolic inclusion bodies and cell death in distinct neuronal populations. Since cyclin-dependent kinase-5 (CDK5) has been shown to exert beneficial effects on aggregate formation and cell death in various polyglutamine diseases, we tested its therapeutic potential for SCA3. Our data show increased caspase-dependent Ataxin-3 cleavage, aggregation, and neurodegeneration in the absence of sufficient CDK5 activity. This disease-propagating effect could be reversed by mutation of the caspase cleavage site in Ataxin-3. Moreover, reduction of CDK5 expression levels by RNAi in vivo enhances SCA3 toxicity as assayed in a Drosophila model for SCA3. In summary, we present CDK5 as a potent neuroprotectant, regulating cleavage and thereby toxicity of Ataxin-3 and other polyglutamine proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.