Background: The extent of interstitial fibrosis on kidney biopsy is regarded as a prognostic indicator and guide to treatment. Patients with extensive fibrosis are assigned to supportive treatments with the expectation that they have advanced beyond the point at which immunosuppressive or other disease-modifying therapies would be of benefit. Our study highlights some of the limitations of using interstitial fibrosis to predict who will develop end-stage renal disease (ESRD). Methods: Analysis of 434 consecutive renal biopsies performed between 2001 and 2012 at a single center. We assessed the influence of various clinical factors along with fibrosis as predictors of ESRD and dialysis-free survival in various patient groups. Results: Interstitial fibrosis performed well overall as a predictor of progression to dialysis. On average, patients with >50% fibrosis progressed more rapidly than those with either 25-49 or 0-24% fibrosis with a median time to dialysis of 1.2, 6.5 and >10 years, respectively. In contrast, interstitial fibrosis was of less value as a predictor of disease progression in a subset of cases that included patients over the age of 70 and those with diabetic nephropathy on biopsy. Surprisingly, 13.9% of patients with normal renal function had 25-49% fibrosis and 5% had more than 50% fibrosis on biopsy, and 5 years after undergoing biopsy 21% of patients with >50% fibrosis still remained dialysis free. Conclusion: Renal fibrosis is an imperfect prognostic indicator for the development of ESRD and caution should be exercised in applying it too rigidly, especially in elderly or diabetic patients.
Premature atherosclerosis is a severe complication of lupus and other systemic autoimmune disorders. Gain-of-function polymorphisms in interferon regulatory factor 5 (IRF5) are associated with an increased risk of developing lupus and IRF5 deficiency in lupus mouse models ameliorates disease. However, whether IRF5 deficiency also protects against atherosclerosis development in lupus is not known. Here we addressed this question using the gld.apoE−/− mouse model. IRF5 deficiency markedly reduced lupus disease severity. Unexpectedly, despite the reduction in systemic immune activation, IRF5-deficient mice developed increased atherosclerosis and also exhibited metabolic dysregulation characterized by hyperlipidemia, increased adiposity and insulin resistance. Levels of the atheroprotective cytokine IL-10 were reduced in aortae of IRF5-deficient mice and in vitro studies demonstrated that IRF5 is required for IL-10 production downstream of TLR7 and TLR9 signaling in multiple immune cell types. Chimera studies showed that IRF5 deficiency in bone marrow-derived cells prevents lupus development and contributes in part to the increased atherosclerosis. Notably, IRF5 deficiency in non-bone marrow-derived cells also contributes to the increased atherosclerosis through the generation of hyperlipidemia and increased adiposity. Together, our results reveal a protective role for IRF5 in lupus-associated atherosclerosis that is mediated through the effects of IRF5 in both immune and non-immune cells. These findings have implications for the proposed targeting of IRF5 in the treatment of autoimmune disease as global IRF5 inhibition may exacerbate cardiovascular disease in these patients.
Objective Polymorphisms in the transcription factor IRF5 are associated with an increased risk of developing RA. This study was done to determine the role of IRF5 in arthritis development. Methods K/BxN serum transfer arthritis was induced in mice deficient in IRF5, or lacking IRF5 only in myeloid cells, and arthritis severity was evaluated. K/BxN arthritis was also induced in mice deficient in TRIF, TLR2, TLR3, TLR4 and TLR7 to determine pathways through which IRF5 might promote arthritis. In-vitro studies were performed to determine the role of IRF5 in IL-1 receptor and TLR signaling. Results Arthritis severity was reduced in IRF5-deficient, TRIF-deficient, TLR3-deficient and TLR7-deficient mice. The expression of multiple genes regulating neutrophil recruitment or function and bioactive IL-1β formation was reduced in the joints during active arthritis in IRF5-deficient mice. In vitro studies showed that TLR7 and the TRIF-dependent TLR3 pathway induce pro-inflammatory cytokine production in disease relevant cell types in an IRF5-dependent manner. Conclusion IRF5 contributes to disease pathogenesis in inflammatory arthritis. This is likely due at least in part to the role of IRF5 in mediating pro-inflammatory cytokine production downstream of TLR7 and TLR3. As TLR7 and TLR3 are both RNA-sensing TLRs, this suggests that endogenous RNA ligands present in the inflamed joint promote arthritis development. These findings may be relevant to human RA as RNA capable of activating TLR7 and TLR3 is present in synovial fluid and TLR7 and TLR3 are upregulated in the joints of RA patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.