Deep learning has become the dominant approach in coping with various tasks in Natural Language Processing (NLP). Although text inputs are typically represented as a sequence of tokens, there is a rich variety of NLP problems that can be best expressed with a graph structure. As a result, there is a surge of interests in developing new deep learning techniques on graphs for a large number of NLP tasks. In this survey, we present a comprehensive overview on Graph Neural Networks (GNNs) for Natural Language Processing. We propose a new taxonomy of GNNs for NLP, which systematically organizes existing research of GNNs for NLP along three axes: graph construction, graph representation learning, and graph based encoder-decoder models. We further introduce a large number of NLP applications that are exploiting the power of GNNs and summarize the corresponding benchmark datasets, evaluation metrics, and open-source codes. Finally, we discuss various outstanding challenges for making the full use of GNNs for NLP as well as future research directions. To the best of our knowledge, this is the first comprehensive overview of Graph Neural Networks for Natural Language Processing.
The task of RDF-to-text generation is to generate a corresponding descriptive text given a set of RDF triples. Most of the previous approaches either cast this task as a sequence-to-sequence problem or employ graph-based encoder for modeling RDF triples and decode a text sequence. However, none of these methods can explicitly model both local and global structure information between and within the triples. To address these issues, we propose to jointly learn local and global structure information via combining two new graph-augmented structural neural encoders (i.e., a bidirectional graph encoder and a bidirectional graph-based meta-paths encoder) for the input triples. Experimental results on two different WebNLG datasets show that our proposed model outperforms the state-of-the-art baselines. Furthermore, we perform a human evaluation that demonstrates the effectiveness of the proposed method by evaluating generated text quality using various subjective metrics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.