The neural/mental operations involved in the process of visual word recognition (VWR) are fundamental for the efficient comprehension of written/printed words during reading. The present study used CiteSpace, a visual analysis software, to identify the intellectual landscape where VWR has been reviewed in the past decade. Thus, synthesized co-citation networks were analyzed to explore and discuss the main questions raised in the VWR literature: the research fronts and the emerging trends of research on this topic. Our results showed that the main questions addressed in VWR studies during the last decade have been focused on four main aspects related to “what,” “where,” “when,” and “how” of VWR; to be specific, the different types of representations assessed during VWR (“what”), the locations and the timing of the brain activity involved in VWR (“where” and “when”), and the interactivity among different representations during processing (“how”). Among the revised studies, letter position coding was found to be the main topic of interest, possibly reflecting the critical role of this process. Furthermore, the evidence found in these studies consistently supported that VWR implies access to phonological, semantic, and morphological representations, which interact and modulate the processing of written words, particularly during early stages. Altogether, our findings showed the evolution in VWR literature regarding the different cognitive and neural operations involved in this process, highlighting the growing interest over the last decade toward the top-down way that mental representations interact.
Background: The volume loss of the hippocampus and amygdala in non-demented individuals has been reported to increase the risk of developing Alzheimer’s disease (AD). Many neuroimaging genetics studies mainly focused on the individual effects of APOE and CLU on neuroimaging to understand their neural mechanisms, whereas their interaction effects have been rarely studied. Objective: To assess whether APOE and CLU have synergetic effects, we investigated the epistatic interaction and combined effects of the two genetic variants on morphological degeneration of hippocampus and amygdala in the non-demented elderly at baseline and 2-year follow-up. Methods: Besides the widely-used volume indicator, the surface-based morphometry method was also adopted in this study to evaluate shape alterations. Results: Our results showed a synergistic effect of homozygosity for the CLU risk allele C in rs11136000 and APOE ɛ4 on the hippocampal and amygdalar volumes during a 2-year follow-up. Moreover, the combined effects of APOE ɛ4 and CLU C were stronger than either of the individual effects in the atrophy progress of the amygdala. Conclusion: These findings indicate that brain morphological changes are caused by more than one gene variant, which may help us to better understand the complex endogenous mechanism of AD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.