1 We investigated the relationship between characteristics of coffee shade systems and coffee pest infestation by the black coffee twig borer Xylosandrus compactus Eichhoff. The pest deprives Uganda of $40 millions annually, yet its control remains inadequate. 2 The present study considered three rainfall zones in Central Uganda and 50 coffee plots that were randomly selected from each rainfall zone. Data were collected on X. compactus infestation and key shade indicators: canopy cover, tree-species densities, diameter at breast height (DBH) and ratio of coffee to banana. 3 Cluster analysis revealed two coffee shade systems: a matured shade tree (MST) system and a young poly-culture (YPC) system. Xylosandrus compactus infestations were significantly less in the MST system than in the YPC system and significantly less in the low rainfall zone than in the high rainfall zone. An increase in the density of Carica papaya and Albizia chinensis significantly reduced and increased X. compactus infestation, respectively. A higher average DBH of individual trees and a higher density of trees that exude sap significantly lowered X. compactus infestation. 4 Suppressing X. compactus infestation requires bigger trees, a high density of sap-exuding trees and no Albizia chinensis. Further research should aim to investigate X. compactus flight activity and microclimate influencing X. compactus population dynamics.
Coffee agroforestry systems deliver ecosystem services (ES) critical for rural livelihoods like food but also disservices that constrain livelihoods like fostering coffee-pests. Since such ES are treebased, maximizing ES and limiting constraints requires knowledge on optimizing on-farm tree composition especially trees adapted to local conditions. The study was in three sites along a rainfall gradient in Central Uganda where we: assessed tree diversity in coffee agroforestry; ranked tree suitability for providing ES according to farmers' knowledge; and then proposed an approach for optimizing on-farm tree composition for delivery of ES. We collected data on tree diversity and, farmers' knowledge of tree species and the ES they provide. Farmers ranked ES in order of importance to their livelihoods ('Needs rank') and ranked trees according to suitability for providing ES. Using Bradley Terry modeling, we grouped trees into 'ES groups' according to suitability for providing different ES and ranked 'ES groups' according to tree diversity ('Diversity rank'). Tree-suitability for providing ES and importance of ES to farmers varied with rainfall regime but tree diversity did not match farmers' needs for ES. We propose the FaD-FaN (matching farm tree diversity to farmers' needs) approach for optimizing tree species composition with respect to tree-suitability for farmers' priority ES. Farmers locally prioritize ES needed and identify trees that best serve such ES. The approach then focuses on modifying on-farm tree diversity to match/suit 123Agroforest Syst https://doi.org/10.1007/s10457-017-0172-8 farmers' priority ES. The FaD-FaN approach caters for varying socio-ecological conditions; it's adaptable for other coffee and cocoa-growing areas worldwide.
Banana weevil (Cosmopolites sordidus, Germar) is a major pest in East African Highland Banana. The influence of crop nutritional status on weevil damage is poorly understood. Nutrient availability affects the nutritional quality of plants for weevils and may affect weevil damage. Here, we evaluate the effect of insecticides alone and in combination with fertilisers (N, P, K and Si) on weevil damage using data from two experiments in central and southwest Uganda. In the first experiment, we varied chlorpyrifos and application rates of N, P and K. In the second experiment, we varied the application rates of K and Si. Treatment effects were analysed using generalised linear mixed models with a negative binomial distribution. In the first experiment, chlorpyrifos reduced and N increased weevil damage, while P and K had no significant effect. In the K or Si application rates reduced weevil damage compared with the control. We conclude that the combined application of chlorpyrifos with K and Si fertilisers can contribute to weevil damage control on sites with low nutrient availability and should form part of integrated weevil management in bananas. Future studies should assess how much reduction in insecticide use is possible in EAHB with judicious input rates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.