Although many genes have been identified for the autosomal recessive cerebellar ataxias (ARCAs), several patients are unlinked to the respective loci, suggesting further genetic heterogeneity. We combined homozygosity mapping and exome sequencing in a consanguineous Egyptian family with congenital ARCA, mental retardation and pyramidal signs. A homozygous 5-bp deletion in SPTBN2, the gene whose in-frame mutations cause autosomal dominant spinocerebellar ataxia type 5, was shown to segregate with ataxia in the family. Our findings are compatible with the concept of truncating SPTBN2 mutations acting recessively, which is supported by disease expression in homozygous, but not heterozygous, knockout mice, ataxia in Beagle dogs with a homozygous frameshift mutation and, very recently, a homozygous SPTBN2 nonsense mutation underlying infantile ataxia and psychomotor delay in a human family. As there was no evidence for mutations in 23 additional consanguineous families, SPTBN2-related ARCA is probably rare.
In an Egyptian girl born to consanguineous parents, whole-exome sequencing (WES) identified a homozygous mutation in PHGDH, c.1273G>A (p.Val425Met), indicating 3-phosphoglycerate dehydrogenase deficiency. This diagnosis was compatible with the patient’s microcephaly, severe psychomotor retardation, seizures and cataracts. However, she additionally suffered from recurrent (at least monthly) episodes of prolonged and severe chest infections requiring hospitalization, suggesting a secondary, predisposing and potentially Mendelian, condition. A local reactivation of an EBV infection in the respiratory tract was detected after a recent chest infection, likely representing an opportunistic infection based on a compromised immune system. Further inspection of WES data revealed a homozygous nonsense mutation, c.2665A>T (p.Lys889∗), in IFIH1, encoding MDA5. MDA5 detects long viral double-stranded RNA that is generated during replication of picorna viruses, and thereby activates the type I interferon signaling pathway. The results of Western blot analysis of protein from cultured fibroblasts of the patient indicates absence of wild type MDA5/IFIH1, compatible with NMD. We propose that, analogous to the severe course of primary influenza infection due to biallelic deficiency of a downstream effector, IRF7, homozygous loss of IFIH1 defines a novel Mendelian immunodeficiency disorder that increases susceptibility to severe viral infections. This is contrasted to heterozygous gain-of-function IFIH1 mutations in autoimmune diseases. Our findings highlight the potential of comprehensive genomic investigations in patients from consanguineous families to identify monogenic predispositions to severe infections.
Neurodevelopmental delay is a potential feature of strictly defined LCA, documented in our series for some children with homozygous RPGRIP1 and GUCY2D mutations. Strictly defining LCA can limit genetic heterogeneity. On the Arabian Peninsula, the phenotype is frequently from recessive RPGRIP1 mutations, most of which are a founder RPGRIP1 deletion.
Acrocallosal syndrome is characterized by postaxial polydactyly, macrocephaly, agenesis of the corpus callosum, and severe developmental delay. In a few patients with this disorder, a mutation in the KIF7 gene has been reported, which was associated with impaired GLI3 processing and dysregulaton of GLI3 transcription factors. A single patient with acrocallosal syndrome and a de novo p.Ala934Pro mutation in GLI3 has been reported, whereas diverse and numerous GLI3 mutations have also been described in syndromes with overlapping clinical manifestations, including Greig cephalopolysyndactyly syndrome, Pallister-Hall syndrome, trigonocephaly with craniosynostosis and polydactyly, oral-facial-digital syndrome, and non-syndromic polydactyly. Here, we describe a second patient with acrocallosal syndrome, who has a de novo, novel c.2786T>C mutation in GLI3, which predicts p.Leu929Pro. This mutation is in the same domain as the mutation in the previously reported patient. These data confirm that mutations in GLI3 are a cause of the acrocallosal phenotype.
Ophthalmologists should consider the diagnosis of CDH3-related retinopathy in individuals with such clinical features whether or not there is frank hypotrichosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.