Organohalide chemistry underpins many industrial and agricultural processes, and a large proportion of environmental pollutants are organohalides1. Nevertheless, organohalide chemistry is not exclusively of anthropogenic origin, with natural abiotic and biological processes contributing to the global halide cycle2–3. Reductive dehalogenases are responsible for biological dehalogenation in organohalide respiring bacteria4–5, with substrates including the notorious polychlorinated biphenyls (PCBs) or dioxins6–7. These proteins form a distinct subfamily of cobalamin (B12) dependent enzymes that are usually membrane-associated and oxygen-sensitive, hindering detailed studies8–12. We report the characterisation of a soluble, oxygen-tolerant reductive dehalogenase and, by combining structure determination with EPR spectroscopy and simulation, show that a direct interaction between the cobalamin cobalt and the substrate halogen underpins catalysis. In contrast to the carbon-Co bond chemistry catalyzed by the other cobalamin-dependent subfamilies13 we propose that reductive dehalogenases achieve reduction of the organohalide substrate via halogen-Co bond formation. This presents a new paradigm in both organohalide and cobalamin (bio)chemistry that will guide future exploitation of these enzymes in bioremediation or biocatalysis.
The Escherichia coli AcrAB-TolC efflux pump is the archetype of the resistance nodulation cell division (RND) exporters from Gram-negative bacteria. Overexpression of RND-type efflux pumps is a major factor in multidrug resistance (MDR), which makes these pumps important antibacterial drug discovery targets. We have recently developed novel pyranopyridine-based inhibitors of AcrB, which are orders of magnitude more powerful than the previously known inhibitors. However, further development of such inhibitors has been hindered by the lack of structural information for rational drug design. Although only the soluble, periplasmic part of AcrB binds and exports the ligands, the presence of the membraneembedded domain in AcrB and its polyspecific binding behavior have made cocrystallization with drugs challenging. To overcome this obstacle, we have engineered and produced a soluble version of AcrB [AcrB periplasmic domain (AcrBper)], which is highly congruent in structure with the periplasmic part of the full-length protein, and is capable of binding substrates and potent inhibitors. Here, we describe the molecular basis for pyranopyridine-based inhibition of AcrB using a combination of cellular, X-ray crystallographic, and molecular dynamics (MD) simulations studies. The pyranopyridines bind within a phenylalanine-rich cage that branches from the deep binding pocket of AcrB, where they form extensive hydrophobic interactions. Moreover, the increasing potency of improved inhibitors correlates with the formation of a delicate protein-and water-mediated hydrogen bond network. These detailed insights provide a molecular platform for the development of novel combinational therapies using efflux pump inhibitors for combating multidrug resistant Gramnegative pathogens.RND efflux transporters | multidrug resistance | efflux pump inhibitors | X-ray crystallography | molecular dynamics simulation
antibiotic resistance • fluorescence-based assay • metallo-β-lactamase (MBL) • NDM-1 • thiols.ABSTRACT: Resistance to β-lactam antibiotics can be mediated by metallo-β-lactamase enzymes (MBLs). An MBL inhibitor could restore the effectiveness of β-lactams. We report on the evaluation of approved thiol-containing drugs as inhibitors of NDM-1, VIM-1 and IMP-7. Drugs were assessed by a novel assay using a purchasable fluorescent substrate and thermal shift. Best compounds were tested in antimicrobial susceptibility assay. Using these orthogonal screening methods we identified drugs which restored the activity of Imipenem.INTRODUCTION:
Upon antibiotic stress Gram-negative pathogens deploy resistance-nodulation-cell division-type tripartite efflux pumps. These include a H+/drug antiporter module that recognizes structurally diverse substances, including antibiotics. Here, we show the 3.5 Å structure of subunit AdeB from the Acinetobacter baumannii AdeABC efflux pump solved by single-particle cryo-electron microscopy. The AdeB trimer adopts mainly a resting state with all protomers in a conformation devoid of transport channels or antibiotic binding sites. However, 10% of the protomers adopt a state where three transport channels lead to the closed substrate (deep) binding pocket. A comparison between drug binding of AdeB and Escherichia coli AcrB is made via activity analysis of 20 AdeB variants, selected on basis of side chain interactions with antibiotics observed in the AcrB periplasmic domain X-ray co-structures with fusidic acid (2.3 Å), doxycycline (2.1 Å) and levofloxacin (2.7 Å). AdeABC, compared to AcrAB-TolC, confers higher resistance to E. coli towards polyaromatic compounds and lower resistance towards antibiotic compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.