A systematic survey of the antimicrobial properties of substituted salicylaldehydes and some related aromatic aldehydes is reported. A total of 23 different compounds, each at four different concentrations, were studied using a panel of seven microbes (Aspergillus niger, Bacillus cereus, Candida albicans, Escherichia coli, Pseudomonas aeruginosa, Saccharomyces cerevisiae and Staphylococcus epidermidis) and employing the paper disc agar diffusion method. Several aldehydes, most notably halogenated, nitro-substituted and hydroxylated salicylaldehydes, displayed highly potent activity against the microbes studied, giving inhibitory zones up to 49 mm in diameter (paper disc diameter 6 mm), while unsubstituted benzaldehyde and salicylaldehyde had minimal activity. Further, 4,6-dimethoxysalicylaldehyde had considerable activity against C. albicans and slight activity against S. cerevisiae, while displaying minimal activity against bacteria. Also two aromatic dialdehydes had interesting activity. In general, P. aeruginosa was the least sensitive microbe, a result that is in line with observations from a large screening project, in which this microbe was the one against which the least number of active substances was found. Interestingly, the structure-activity relationships of the aldehydes studied were clearly different for different microbes. Many of the aldehydes tested had such high antimicrobial activity that they are noteworthy candidates for practical applications as well as interesting lead compounds for the development of novel antimicrobial drugs and disinfectants. The structure-activity relationships are discussed in detail. For high activity, substituents are required in benzaldehyde as well as in its 2-hydroxy derivative salicylaldehyde. One hydroxy group alone (at the 2-position) is not enough, but further hydroxylation may produce high activity. The effects of substituents are in some cases dramatic. Halogenation, hydroxylation and nitro substitution may produce highly active compounds, but the effects are not easily predicted nor can they be extrapolated from one microbe to another.
Vancomycin-resistant enterococci (VRE) and methicillin-resistant staphylococci, most notably methicillin-resistant Staphylococcus aureus (MRSA), are serious clinical problems. The antibiotic arsenal available against them is limited, and new mutants worsen the situation. We studied the activity of (+)-usnic acid, an old lichen-derived drug, and its sodium salt against clinical isolates of VRE and MRSA using the agar diffusion and minimal inhibitory concentration (MIC) methods. The acid and, especially, the sodium salt had potent antimicrobial activity against all clinical isolates of VRE and MRSA studied. The MIC values of the sodium salt against VRE strains ranged between 4 and 16 microg/ml (1-day test) and between 4 and 31 microg/ml (2-day test), being below 8 microg/ml for most strains. The salt had potent activity even against those strains that were not inhibited by ampicillin (125 microg/ml), and it never lost its activity after 24 h, in contrast to ampicillin. Thus, in spite of the fact that usnic acid can in some cases cause serious toxicity, it and its salts may be worth considering in clinical practice in cases where other therapies have failed or the microbe is resistant toward other agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.