In an experimental set‐up in and around Helsinki, Finland (60°N, 25°E), we have detected pest insect immigration using weather radars and insect traps in the field. This study was part of a project to develop a system to give warning of a possible arrival of long‐range migrant insect pests. Bird‐cherry aphid, Rhopalosiphum padi, and diamondback moth, Plutella xylostella, were found on the ground following migrations in warm airstreams at the end of May 2007. This migration episode was successfully forecast by the meteorologists in the project team. For the summer 2008, we developed a pest insect immigration alarm system based on SILAM, a Finnish Meteorological Institute atmospheric dispersion model. The first important pest insect immigration occurred in late June, bringing bird‐cherry aphids. Our alarm system correctly produced a warning of this immigration. We studied the migration path in the observed events in 2007 and 2008 with the help of the atmospheric dispersion model. Weather radars frequently showed rain echo over the area, but there was also a lot of echoes originating from the migrating insects. Using the polarimetric weather radar in Helsinki, we could differentiate insects from other sources of echoes. Insects were common in layers below 1 km, and were observed up to height of about 2.5 km. Using Doppler weather radars we were able to observe the speed and direction of the migration. The experiment showed that an atmospheric dispersion model is an effective tool for predicting the movement of airborne migrants. The alarm system would work still better, if the sources of the immigrants were known in more detail. In addition, the very simple modelling of airborne migration should be refined. Weather radars, and especially polarimetric systems, are able to detect insect migrations and reveal details of the phenomenon not obtainable by other means.
Cultivated organic soils can be a major source of GHG emissions in countries with high coverage of peat soils. Targeting mitigation measures based on mapping of cultivated organic soils would reduce these emissions and increase sustainability of agriculture. Different georeferenced datasets were combined to study the area trend and describe current agricultural use of organic soils. The area was also mapped regionally into classes based on intensity of cultivation and organic layer depth, and an example allocation of potential mitigation measures was made at the country scale. The area and proportion of cultivated organic soils have increased in Finland since 1990 but the clearance rate has decreased in recent years. More than half of the area retains a peat layer deeper than 0.6 m indicating long-lasting mitigation potential with measures capable of slowing peat decomposition. Sixty-five percent of the cultivated organic soil area was not considered a priority area for radical management changes, for various reasons, but there are 85,000 ha of field with more realistic potential for GHG mitigation. The mapping method was found to be a practical tool for depicting the GHG mitigation potential of cultivated organic soils. Significant reductions in agricultural GHG emissions can be expected with implementation of the suggested mitigation measures.
Variation in temperature challenges crop production and animal farming. Elevated temperatures are often harmful, though may also open opportunities at high latitudes. Impacts depend on the vulnerability of the object, production system and their resilience to climatic variability. The station-wise temperature observations from the Finnish Meteorological Institute for a time period of 54 years (1961‒2014) were interpolated to a regular 10 km × 10 km grid covering the whole country. Several successive time slices were used to measure the likelihood for: 1) elevated temperatures of a) ≥1 °C above normal for three weeks, b) ≥2 °C above normal for two weeks and c) ≥3 °C above normal for one week, and 2) heatwaves with daily maximum temperature >25 °C for: a) 5 days (short) or b) 14 days (long episode). We also estimated the likelihood of warm winds in the early growing season which may enhance pest migration. We found large spatial and temporal variations in the likelihoods of elevated temperatures with many impacts on crop production, animal farming and welfare. In fact, only 1 °C temperature elevation may already be harmful, though in some cases also beneficial depending on region and vulnerability or adaptation of the object and production system. Though we show only some examples of the potential impacts of temperature variation on high latitude agro-ecosystems, these data are valuable as such for much wider applications in agriculture and beyond that.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.