Rice is an important staple food for more than half of the world's population. Especially in Asian countries, rice is a major contributor to dietary glycaemic load (GL). Sustained consumption of higher-GL diets has been implicated in the development of chronic diseases such as type 2 diabetes mellitus. Given that a reduction in postprandial glycaemic and insulinaemic responses is generally seen as a beneficial dietary change, it is useful to determine the variation in the range of postprandial glucose (PPG) and insulin (PPI) responses to rice and the primary intrinsic and processing factors known to affect such responses. Therefore, we identified relevant original research articles on glycaemic response to rice through a systematic search of the literature in Scopus, Medline and SciFinder databases up to July 2014. Based on a glucose reference value of 100, the observed glycaemic index values for rice varieties ranged from 48 to 93, while the insulinaemic index ranged from 39 to 95. There are three main factors that appear to explain most of the variation in glycaemic and insulinaemic responses to rice: (1) inherent starch characteristics (amylose:amylopectin ratio and rice cultivar); (2) post-harvest processing (particularly parboiling); (3) consumer processing (cooking, storage and reheating). The milling process shows a clear effect when compared at identical cooking times, with brown rice always producing a lower PPG and PPI response than white rice. However, at longer cooking times normally used for the preparation of brown rice, smaller and inconsistent differences are observed between brown and white rice.
Consumption of beta-glucan, FOS, or a combination thereof in meal-replacement bars at the levels tested for 2 consecutive days does not improve appetite control. Efficacy may have improved if the consumption period was longer, if the content of beta-glucan was greater, or if a form of beta-glucan that generates even higher gastric viscosity was consumed. This trial was registered at (clinicaltrials.gov) as NCT00776256.
Addition of specific types of alginates to drinks can enhance postmeal suppression of hunger, by forming strong gastric gels in the presence of calcium. However, some recent studies have not demonstrated an effect of alginate/calcium on appetite, perhaps because the selected alginates do not produce sufficiently strong gels or because the alginates were not sufficiently hydrated when consumed. Therefore, the objective of the study was to test effects on appetite of a strongly gelling and fully hydrated alginate in an acceptable, low‐viscosity drink formulation. In a balanced order crossover design, 23 volunteers consumed a meal replacement drink containing protein and calcium and either 0 (control), 0.6, or 0.8% of a specific high‐guluronate alginate. Appetite (six self‐report scales) was measured for 5 h postconsumption. Relevant physicochemical properties of the drinks were measured, i.e., product viscosity and strength of gel formed under simulated gastric conditions. Hunger was robustly reduced (20–30% lower area under the curve) with 0.8% alginate (P < 0.001, analysis of covariance), an effect consistent across all appetite scales. Most effects were also significant with 0.6% alginate, and a clear dose‐response observed. Gastric gel strength was 1.8 and 3.8 N for the 0.6 and 0.8% alginate drinks, respectively, while product viscosity was acceptable (<0.5 Pa·s at 10 s−1). We conclude that strongly gastric‐gelling alginates at relatively low concentrations in a low‐viscosity drink formulation produced a robust reduction in hunger responses. This and other related studies indicate that the specific alginate source and product matrix critically impacts upon apparent efficacy.
The incidence of type 2 diabetes mellitus (T2DM) is increasing worldwide, including in developing countries, particularly in South Asia. Intakes of foods generating a high postprandial glucose (PPG) response have been positively associated with T2DM. As part of efforts to identify effective and feasible strategies to reduce the glycaemic impact of carbohydrate-rich staples, we previously found that addition of guar gum (GG) and chickpea flour (CPF) to wheat flour could significantly reduce the PPG response to flatbread products. On the basis of the results of an exploratory study with Caucasian subjects, we have now tested the effect of additions of specific combinations of CPF with low doses of GG to a flatbread flour mix for their impacts on PPG and postprandial insulin (PPI) responses in a South-Asian population. In a randomised, placebo-controlled full-cross-over design, fifty-six healthy Indian adults consumed flatbreads made with a commercial flatbread mix (100 % wheat flour) with no further additions (control) or incorporating 15 % CPF in combination with 2, 3 or 4 % GG. The flatbreads with CPF and 3 or 4 % GG significantly reduced PPG (both ≥15 % reduction in positive incremental AUC, P<0·01) and PPI (both ≥28 % reduction in total AUC, P<0·0001) compared with flatbreads made from control flour. These results confirm the efficacy and feasibility of the addition of CPF with GG to flatbread flour mixes to achieve significant reductions in both PPG and PPI in Indian subjects.
Background/Objectives: 'Slowly digestible' carbohydrates have been claimed to reduce appetite through their effects on postprandial glucose and insulin levels, but literature is inconsistent. The inconsistencies between studies might be explained by factors other than glycemic effects per se, for example, nutritional or physical properties. We tested this possibility by examining postprandial glucose, insulin and appetite responses to drinks differing only in rate and extent of digestibility of carbohydrates. This was accomplished by comparing different glucose polymers: maltodextrin (rapidly digestible) versus medium-chain pullulan (slowly but completely digestible) versus long-chain pullulan (indigestible). Subjects/Methods: In a randomized double-blind balanced crossover design, 35 subjects received drinks with 15 g test carbohydrate polymers. Key outcome measures were appetite scores, digestibility (in vitro test and breath hydrogen), and (in a subset) glucose and insulin levels. Results: Digestibility, glucose and insulin data confirmed the rapid, slow and nondigestible nature of the test carbohydrates. Despite its low digestibility, only long-chain pullulan reduced appetite compared with the maltodextrin control, whereas the medium-chain pullulan did not. Conclusions: We conclude that glycemic responses per se have minimal effects on appetite, when tested in products differing in only carbohydrate digestibility rate and extent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.