In a prospective study of 295 male Israeli military recruits a 31% incidence of stress fractures was found. Eighty per cent of the fractures were in the tibial or femoral shaft, while only 8% occurred in the tarsus and metatarsus. Sixty-nine per cent of the femoral stress fractures were asymptomatic, but only 8% of those in the tibia. Even asymptomatic stress fractures do, however, need to be treated. Possible explanations for the unusually high incidence of stress fractures in this study are discussed.
In a prospective study of stress fractures the hypothesis that a shock-absorbing orthotic device worn within military boots could lessen the incidence of stress fractures was tested. The incidence of metatarsal, tibial, and femoral stress fractures was lower in the orthotic group, but only the latter difference was statistically significant. The time of onset and the location of stress fractures between orthotic and nonorthotic users did not differ. These findings suggest that the incidence of femoral stress fractures, which are the most dangerous type of stress fracture because of their high risk of developing into displaced fractures, can be reduced by an orthotic device.
A prospective study of 295 infantry recruits has shown that the mediolateral width of the tibia measured radiographically at each of three different levels in the bone had a statistically significant correlation with the total incidence of stress fractures as well as with those in the tibia alone or the femur alone. A narrow tibial width was shown to be a risk factor, but cortical thickness was not found to be significant.
BackgroundMost of the blood tests aiming for breast cancer screening rely on quantification of a single or few biomarkers. The aim of this study was to evaluate the feasibility of detecting breast cancer by analyzing the total biochemical composition of plasma as well as peripheral blood mononuclear cells (PBMCs) using infrared spectroscopy.MethodsBlood was collected from 29 patients with confirmed breast cancer and 30 controls with benign or no breast tumors, undergoing screening for breast cancer. PBMCs and plasma were isolated and dried on a zinc selenide slide and measured under a Fourier transform infrared (FTIR) microscope to obtain their infrared absorption spectra. Differences in the spectra of PBMCs and plasma between the groups were analyzed as well as the specific influence of the relevant pathological characteristics of the cancer patients.ResultsSeveral bands in the FTIR spectra of both blood components significantly distinguished patients with and without cancer. Employing feature extraction with quadratic discriminant analysis, a sensitivity of ~90 % and a specificity of ~80 % for breast cancer detection was achieved. These results were confirmed by Monte Carlo cross-validation. Further analysis of the cancer group revealed an influence of several clinical parameters, such as the involvement of lymph nodes, on the infrared spectra, with each blood component affected by different parameters.ConclusionThe present preliminary study suggests that FTIR spectroscopy of PBMCs and plasma is a potentially feasible and efficient tool for the early detection of breast neoplasms. An important application of our study is the distinction between benign lesions (considered as part of the non-cancer group) and malignant tumors thus reducing false positive results at screening. Furthermore, the correlation of specific spectral changes with clinical parameters of cancer patients indicates for possible contribution to diagnosis and prognosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.