This paper highlights the statistical procedure used in developing models that have the ability of capturing and forecasting the traffic of mobile communication network operating in Vietnam. To build such models, we follow Box-Jenkins method to construct a multiplicative seasonal ARIMA model to represent the mean component using the past values of traffic, then incorporate a GARCH model to represent its volatility. The traffic is collected from EVN Telecom mobile communication network. Diagnostic tests and examination of forecast accuracy measures indicate that the multiplicative seasonal ARIMA/GARCH model, i.e. ARIMA (1, 0, 1) × (0, 1, 1)24/GARCH (1, 1) shows a good estimation when dealing with volatility clustering in the data series. This model can be considered to be a flexible model to capture well the characteristics of EVN traffic series and give reasonable forecasting results. Moreover, in such situations that the volatility is not necessary to be taken into account, i.e. short-term prediction, the multiplicative seasonal ARIMA/GARCH model still acts well with the GARCH parameters adjusted to GARCH (0, 0).
In this research, a highly conductive graphene film was synthesized through the chemical reduction of graphene oxide (RGO) nanosheets followed by thermal treatment at 1100˚C (RGO-1100˚C) under H2 ambient. The as-prepared graphene films were characterized by using X-ray photoelectron spectroscopy, fourier transform infrared spectroscopy, X-ray diffractions, raman spectroscopy, transmission electron microscopy, scanning electron microscopy, atomic force microscopy and by electrical conductivity measurements. The results showed that the thermal treatment efficiently removed residual oxygen-containing functional groups on the surface of the RGO sheets and simultaneously restored the sp 2 carbon networks in the graphene sheets. As a result, the electrical conductivity of RGO-1100˚C (~210 S/cm) film was greatly improved compared with that of RGO (~24 S/cm) and graphene oxide (4.2 × 10 −4 S/m) films. In addition, the NO2 gas sensing characteristics of the as-prepared RGO films were studied. The results indicated that RGO films were highly responsive to NO2 at temperature of 200˚C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.