This study demonstrated for the first time an in situ high-temperature fiber-optic Raman probe to study the structure of glass and slag samples at temperatures up to 1400 • C. A customized external telescope was integrated into a portable fiber-optic Raman probe to extend the optical working distance to allow the probe to work in a hightemperature environment. Three samples were evaluated to demonstrate the functionality of the high-temperature fiber-optic Raman probe. Room temperature and high-temperature Raman spectra were successfully collected and analyzed. In addition, a deconvolution algorithm was used to identify peaks in the spectrum that could then be related to the molecular structure of components in each sample. This flexible and reliable hightemperature Raman measurement method has great potential for various applications, such as materials development, composition, and structure monitoring during high-temperature processing, chemical identification, and process monitoring in industrial production.
Continuous casting in steel production uses specially developed oxyfluoride glasses (mold fluxes) to lubricate a mold and control the solidification of the steel in the mold. The composition of the flux impacts properties, including basicity, viscosity, and crystallization rate, all of which affect the stability of the casting process and the quality of the solidified steel. However, mold fluxes interact with steel during the casting process, resulting in flux chemistry changes that must be considered in the flux design. Currently, the chemical composition of mold flux must be determined by extracting flux samples from the mold during casting and then processing these samples offline to estimate the working chemical composition and, therefore, the expected properties of the flux. Raman spectroscopy offers an alternative method for performing flux analysis with the potential to perform measurements online during the casting process. Raman spectroscopy uniquely identifies specific chemical bonds and symmetries in the glassy flux by revealing peaks that are a fingerprint of the vibration modes of molecules in the flux. The intensities of specific peaks in Raman spectra can be correlated with the chemical composition of the melt and associated properties such as basicity and viscosity. This paper reports on the first use of a portable fiber-optic Raman sensor for in situ Raman spectroscopic measurements of molten flux at 1400 °C. The work demonstrates the advantages of fiber-optic Raman spectroscopy to document the structure and chemical composition of flux samples at temperatures typically encountered in the mold during continuous caster operation. Experimental results demonstrate that the composition-dependent Raman signal shifts can be detected at caster operating temperatures, and the use of hightemperature Raman analysis for in-line flux monitoring shows significant promise for the in situ detection of changes in flux composition and physical properties during casting.
This study presents a novel in situ high-temperature fiber optic Raman probe that enables the study of the physical properties and structure of molten samples at temperatures up to 1400 °C. To demonstrate the functionality of the hightemperature fiber optic Raman probe, different composition mold fluxes were evaluated in this report. The Raman spectra at flux molten temperature were successfully collected and analyzed. A deconvolution algorithm was employed to identify peaks in the spectra associated with the molecular structure of the components in each sample. The experimental results demonstrate that the composition-dependent Raman signal shift can be detected at high temperatures, indicating that molten materials analysis using a high-temperature Raman system shows significant promise. This flexible and reliable high-temperature Raman measurement method has great potential for various applications, such as materials development, composition and structure monitoring during high-temperature processing, chemical identification, and process monitoring in industrial production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.