Consistent with this, thickening of the skin assessed by histology was significantly reduced in the C3 e/e mice (Figure 2b and c). The altered skin pathology in the IMQ-treated C3-deficient mice appeared to affect mainly the epidermis. Untreated skin of WT and C3 e/e mice was histologically indistinguishable. In summary, we demonstrate that C3 is involved in the development and resolution of the psoriasiform skin inflammation induced by short-term treatment with IMQ. The proinflammatory effect of C3 is likely to be mediated by several mechanisms. In the absence of C3 the expression of psoriasis-relevant genes in the skin was impaired, neutrophil infiltration into the inflamed site was decreased, and IL-17 production by gd T cells in the skin and the draining lymph nodes was reduced. Taken together, these data support a proinflammatory role of C3 during psoriasis-like skin inflammation.
Skullcapflavone II (SFII), a flavonoid derived from Scutellaria baicalensis, has been reported to have anti-inflammatory properties. However, its therapeutic potential for skin inflammatory diseases and its mechanism are unknown. Therefore, this study aimed to investigate the effect of SFII on TNF-α/IFN-γ-induced atopic dermatitis (AD)-associated cytokines, such as thymus- and activation-regulated chemokine (TARC) and macrophage-derived chemokine (MDC). Co-stimulation with TNF-α/IFN-γ in HaCaT cells is a well-established model for induction of pro-inflammatory cytokines. We treated cells with SFII prior to TNF-α/IFN-γ-stimulation and confirmed that it significantly inhibited TARC and MDC expression at the mRNA and protein levels. Additionally, SFII also inhibited the expression of cathepsin S (CTSS), which is associated with itching in patients with AD. Using specific inhibitors, we demonstrated that STAT1, NF-κB, and p38 MAPK mediate TNF-α/IFN-γ-induced TARC and MDC, as well as CTSS expression. Finally, we confirmed that SFII significantly suppressed TNF-α/IFN-γ-induced phosphorylation of STAT1, NF-κB, and p38 MAPK. Taken together, our study indicates that SFII inhibits TNF-α/IFN-γ-induced TARC, MDC, and CTSS expression by regulating STAT1, NF-κB, and p38 MAPK signaling pathways.
Proteoglycan (PG) is a glycosaminoglycan (GAG)-conjugated protein essential for maintaining tissue strength and elasticity. The most abundant skin PGs, biglycan and decorin, have been reported to decrease as skin ages. Insulin-like growth factor-1 (IGF-1) is important in various physiological functions such as cell survival, growth, and apoptosis. It is well known that the serum level of IGF-1 decreases with age. Therefore, we investigated whether and how IGF-1 affects biglycan and decorin. When primary cultured normal human dermal fibroblasts (NHDFs) were treated with IGF-1, protein levels of biglycan and decorin increased, despite no difference in mRNA expression. This increase was not inhibited by transcription blockade using actinomycin D, suggesting that it is mediated by IGF-1-induced enhanced translation. Additionally, both mRNA and protein expression of ADAMTS5, a PG-degrading enzyme, were decreased in IGF-1-treated NHDFs. Knockdown of ADAMTS5 via RNA interference increased protein expression of biglycan and decorin. Moreover, mRNA and protein expression of ADAMTS5 increased in aged human skin tissues compared to young tissue. Overall, IGF-1 increases biglycan and decorin, which is achieved by improving protein translation to increase synthesis and preventing ADAMTS5-mediated degradation. This suggests a new role of IGF-1 as a regulator for biglycan and decorin in skin aging process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.