Recent work has shown that current sentiment classification models are fragile and sensitive to simple perturbations. In this work, we propose a novel adversarial training approach, LexicalAT, to improve the robustness of current sentiment classification models. The proposed approach consists of a generator and a classifier. The generator learns to generate examples to attack the classifier while the classifier learns to defend these attacks. Considering the diversity of attacks, the generator uses a large-scale lexical knowledge base, WordNet, to generate attacking examples by replacing some words in training examples with their synonyms (e.g., sad and unhappy), neighbor words (e.g., fox and wolf), or supersuperior words (e.g., chair and armchair). Due to the discrete generation step in the generator, we use policy gradient, a reinforcement learning approach, to train the two modules. Experiments show LexicalAT outperforms strong baselines and reduces test errors on various neural networks, including CNN, RNN, and BERT. 1
The Emotion Cause Extraction (ECE) task aims to identify clauses which contain emotion-evoking information for a particular emotion expressed in text. We observe that a widely-used ECE dataset exhibits a bias that the majority of annotated cause clauses are either directly before their associated emotion clauses or are the emotion clauses themselves. Existing models for ECE tend to explore such relative position information and suffer from the dataset bias. To investigate the degree of reliance of existing ECE models on clause relative positions, we propose a novel strategy to generate adversarial examples in which the relative position information is no longer the indicative feature of cause clauses. We test the performance of existing models on such adversarial examples and observe a significant performance drop. To address the dataset bias, we propose a novel graph-based method to explicitly model the emotion triggering paths by leveraging the commonsense knowledge to enhance the semantic dependencies between a candidate clause and an emotion clause. Experimental results show that our proposed approach performs on par with the existing stateof-the-art methods on the original ECE dataset, and is more robust against adversarial attacks compared to existing models. 1
Recent years have witnessed increasing interests in developing interpretable models in Natural Language Processing (NLP). Most existing models aim at identifying input features such as words or phrases important for model predictions. Neural models developed in NLP however often compose word semantics in a hierarchical manner. Interpretation by words or phrases only thus cannot faithfully explain model decisions. This paper proposes a novel Hierarchical INTerpretable neural text classifier, called Hint, which can automatically generate explanations of model predictions in the form of label-associated topics in a hierarchical manner. Model interpretation is no longer at the word level, but built on topics as the basic semantic unit. Experimental results on both review datasets and newsdatasets show that our proposed approach achieves text classification results on par with existing state-of-the-art text classifiers, and generates interpretations more faithful to model predictions and better understood by humans than other interpretable neural text classifiers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.