A rare subset of IL-10-producing B cells, named regulatory B cells (Bregs), suppresses adaptive immune responses and inflammation in mice. In this study, we examined the role of IL-10-producing B cells in HIV-1 infection. Compared to uninfected controls, IL-10-producing B cell frequencies were elevated in both blood and sigmoid colon during the early and chronic phase of untreated HIV-1 infection. Ex vivo IL-10-producing B cell frequency in early HIV-1 infection directly correlated with viral load. IL-10-producing B cells from HIV-1 infected individuals were enriched in CD19+TIM-1+ B cells and were enriched for specificity to trimeric HIV-1 envelope protein. Anti-retroviral therapy was associated with reduced IL-10-producing B cell frequencies. Treatment of B cells from healthy donors with microbial metabolites and Toll-like receptor (TLR) agonists could induce an IL-10 producing phenotype, suggesting that the elevated bacterial translocation characteristic of HIV-1 infection may promote IL-10-producing B cell development. Similar to regulatory B cells found in mice, IL-10-producing B cells from HIV-1-infected individuals suppressed HIV-1-specific T cell responses in vitro, and this suppression is IL-10-dependent. Also, ex vivo IL-10-producing B cell frequency inversely correlated with contemporaneous ex vivo HIV-1-specific T cell responses. Our findings show that IL-10-producing B cells are induced early in HIV-1 infection, can be HIV-1 specific, and are able to inhibit effective anti-HIV-1 T cell responses. HIV-1 may dysregulate B cells toward Bregs as an immune evasion strategy.
The use of tert-butyl(3-cyano-4,6-dimethylpyridin-2yl) carbonate as a chemoselective tert-butoxycarbonylation reagent for aromatic and aliphatic amines has been demonstrated (30 examples).
Background: Common variable immunodeficiency (CVID) is a heterogeneous primary immunodeficiency characterized by low serum antibody levels and recurrent infections. The cellular response to immunization in patients with CVID has not been fully investigated. In this study, we aimed to characterize vaccination-induced influenza-specific memory B-cell responses in CVID. Methods: Eleven individuals affected with CVID and 9 unaffected control individuals were immunized with the 2010-2011 non-adjuvanted seasonal influenza vaccine. Blood samples were collected on the day of vaccination and at week 8 and week 16 after vaccination, and PBMCs were immunophenotyped by flow cytometry. Influenza specific serology was determined using hemagglutination inhibition and microneutralization against vaccine antigens. Influenza-specific memory B-cell responses were determined by ELISpot. Results: Individuals with CVID showed wide variability in the frequency of CD19+ B cells in blood. The CVID group had significantly reduced frequencies of CD19+CD27+ memory B cells. Frequencies of circulating T follicular helper (CD4+CXCR5+) cells were similar between those with CVID and healthy controls. In terms of serology, compared to healthy controls, the CVID group overall showed significantly reduced boosting to vaccine antigens by hemagglutination inhibition and microneutralization assays at 8 weeks compared to controls and failed to maintain responses by 16 weeks compared to controls, resulting in a post-vaccination geometric mean titer (GMT) ≥ 40 to strain A/H1N1 in only 27% at 8 weeks, and 22% at 12 weeks for patients with CVID vs 78% and 75%, respectively for healthy controls. In addition, there was a GMT ≥ 40 to A/H3N2 in only 9% at 8 weeks and 22% at 12 weeks for patients with CVID vs 56% and 50%, respectively for healthy controls. Healthy participants showed significant increases in flu-specific IgM-secreting memory B cells after vaccination, whereas patients with CVID showed non-significant mild increases. Before vaccination, patients with CVID had significantly lower frequencies of background level influenza-specific IgG and IgA memory B cells. Half of the patients with CVID showed an increase in influenza-specific IgG-secreting memory B cells post vaccination, whereas the other half showed none. All control participants exhibited an increase in influenza-specific IgG-secreting B cells. None of the patients with CVID developed influenza-specific IgA memory B-cell response post vaccination, compared to 5/8 in healthy controls. At week 16, the frequency of influenza-specific memory B-cell responses decayed but to non-zero baseline in healthy controls and to zero baseline in patients with CVID. Conclusions: Together, these data demonstrate that patients with CVID respond heterogeneously, but as a group poorly, to non-adjuvanted influenza vaccine, with a subgroup unable to generate influenza-specific memory B-cell responses. No patient with CVID was able to maintain memory response for prolonged periods. Together, our results suggest a defect in Ig class switching and memory B-cell maintenance in patients with CVID during a de novo vaccine immune response.
The severe population ageing has rapidly increased the demand for urban elderly care services in most countries. As a novel urban elderly care mode, community-embedded elderly care facilities integrate various functions and allow older urban adults to enjoy comprehensive care services in a familiar environment at an acceptable cost. Therefore, it is widely recognised as an effective way to resolve the contradiction between the increasing demand and limited supply capacity of elderly care services in large cities. However, spatial analysis of elderly care facilities in previous studies were focused on static characters, ignoring the evolution process. The traditional static analysis methods might be one-sided for the spatial analysis of community-embedded elderly care facilities, considering their highly dynamic development. This study considers Beijing as a case study and establishes a novel spatiotemporal analytical framework, augmented by big data, to analyse the spatial distribution of the local community-embedded elderly care facilities (elderly stations) from a dynamic view. The multi-source data regarding elderly stations, the elderly population and basic geographic information of Beijing were extracted and integrated into the analysis. On this basis, the proposed framework was applied to examine the distribution tendency, evolution trend and accessibility of elderly stations from 2017 to 2020. The results reveal a significant cluster development characteristic of elderly stations. Although the density of elderly stations in the downtown area is much higher than that in the urban periphery, the elderly stations might still be unable to satisfy the enormous elderly care demand in Xicheng and Dongcheng districts. Moreover, the imbalance between the urban centre and peripheries and the spatial mismatch between the elderly stations and population were identified. The research output could support the planning practice of elderly stations for relevant departments.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.