Melanocortin 4 receptor (Mc4r) plays a crucial role in the central control of energy homeostasis, but its role in peripheral organs has not been fully explored. We have investigated the roles of hypothalamus-mediated energy metabolism during Xenopus limb regeneration. We report that hypothalamus injury inhibits Xenopus tadpole limb regeneration. By loss-of-function and gain-of-function studies, we show that Mc4r signaling is required for limb regeneration in regeneration-competent tadpoles and stimulates limb regeneration in later-stage regeneration-defective tadpoles. It regulates limb regeneration through modulating energy homeostasis and ROS production. Even more interestingly, our results demonstrate that Mc4r signaling is regulated by innervation and α-MSH substitutes for the effect of nerves in limb regeneration. Mc4r signaling is also required for mouse digit regeneration. Thus, our findings link vertebrate limb regeneration with Mc4r-mediated energy homeostasis and provide a new avenue for understanding Mc4r signaling in the peripheral organs.
The capacity of digit tip regeneration observed both in rodents and humans establishes a foundation for promoting robust regeneration in mammals. However, stimulating regeneration at more proximal levels, such as the middle phalanges (P2) of the adult mouse, remains challenging. Having shown the effectiveness of transplantation of limb progenitor cells in stimulating limb regeneration in Xenopus, we are now applying the cell transplantation approach to the adult mouse. Here we report that both embryonic and induced pluripotent stem cell (iPSC)-derived limb progenitor-like cells can promote adult mouse P2 regeneration. We have established a simple and efficient protocol for deriving limb progenitor-like cells from mouse iPSCs. iPSCs are cultured as three-dimensional fibrin bodies, followed by treatment with combinations of Fgf8, CHIR99021, Purmorphamine and SB43542 during differentiation. These iPSC-derived limb progenitor-like cells resemble embryonic limb mesenchyme cells in their expression of limb-related genes. After transplantation, the limb progenitor-like cells can promote adult mouse P2 regeneration, as embryonic limb bud cells do. Our results provide a basis for further developing progenitor cell-based approaches for improving regeneration in the adult mouse limbs.
Background Expression of Mc4r in peripheral organs indicates it has broader roles in organ homeostasis and regeneration. However, the expression and function of Mc4r in the mouse limb and digit has not been fully investigated. Our previous work showed that Mc4r−/− mice fail to regenerate the digit, but whether activation of MC4R signaling could rescue digit regeneration, or stimulate proximal digit regeneration is not clear. Results We analyzed the expression dynamics of Mc4r in the embryonic and postnatal mouse limb and digit using the Mc4r-gfp mice. We found that Mc4r-GFP is mainly expressed in the limb nerves, and in the limb muscles that are undergoing secondary myogenesis. Expression of Mc4r-GFP in the adult mouse digit is restricted to the nail matrix. We also examined the effect of α-MSH on mouse digit regeneration. We found that administration of α-MSH in the Mc4r+/− mice rescue the delayed regeneration of distal digit tip. α-MSH could rescue distal digit regeneration in denervated hindlimbs. In addition, α-MSH could stimulate regeneration of the proximally amputated digit, which is non-regenerative. Conclusions Mc4r expression in the mouse limb and digit is closely related to nerve tissues, and α-MSH/MC4R signaling has a neurotrophic role in mouse digit tip regeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.