The Hadamengou deposit is the largest gold deposit in Inner Mongolia. However, given that the sources of ore-forming alkaline magmatic hydrothermal solutions and ore-controlling structures are still controversial, the theories behind the genesis of the deposit have been controversial. In this study, four controlled-source audio magnetotellurics (CSAMT) and spectral induced polarization (SIP) profiles in the mining area were used to obtain the underground resistivity model and the pseudo section map of the apparent frequency dispersivity based on fine inversion. In the resistivity model, there are two high-resistivity blocks with resistivity greater than 3000 Ω m and three low-resistivity channels with resistivity less than 50 Ω m. Combined with the regional geological and drilling data, it is inferred that the high-resistance bodies, R4 and R5, may be alkaline magmatic intrusions related to multiple stages of magmatic hydrothermal activities, ranging from the Precambrian to Yanshanian periods. The highly conductive channels, C3, C5, and C4, may represent the Baotou-Hohhot fault, secondary faults, and ductile shear zone, respectively, which were formed in the Precambrian era and underwent multiple activations during the Hercynian to Yanshanian period. According to the spatial relationship, it is inferred that the ductile shear zone is an important ore-controlling and ore-hosting structure. However, the Baotou–Hohhot fault may be a pre-metallogenic fault rather than an ore-controlling fault. By comparing the resistivity model with the pseudo section of the apparent frequency dispersivity, it was found that all the known gold veins are located in the superimposed area of low resistivity and high-frequency dispersivity. It is speculated that the ductile shear zone outside the alkaline magmatic rock with the superimposed characteristics of low resistivity and high-frequency dispersivity is the favorable area for mineralization.
The Qulong porphyry copper deposit in Tibet is located in the Tethis–Himalaya metallogenic domain, one of the three major porphyry metallogenic domains in the world. At present, the mining area is mainly used for surface mining. The depth revealed by the drilling project is less than 2 km. The potential for deep resources is unknown. Based on an analysis of the geochemical characteristics of the primary halos around the No. 16 prospecting line, deep extension is discussed in this paper. Studies show that the metallogenic elements are Cu and Mo; the near-ore halo elements are Co, Au, Ag, and W; the supra-ore halo elements are Pb, Zn, Mn, and As; and the sub-ore halo elements are Sn and Bi. According to Gregorian’s zoning index and the barycenter method, the primary halo zoning of the No. 16 exploration line from shallow to deep is Mn–P–Pb–Ni–Zn–V–As–Hg–Co–Au–Cu–W–Ag–Mo–Sb–Sr–Cd–Sn–Ti–Bi. This sequence has a distinct “reverse” zoning feature, indicating that there may be a blind ore body deep in the mine. The geochemical parameter evaluation index based on the element content contrast coefficient suggests that there may be a hidden ore body in the deep. The relative hydrothermal mineralization in the center position of the section may be located deep below the north side of borehole ZK1601-1 in the middle of the section. The ore body erosion parameter model shows that the bottom of the drilling engineering control is the middle tail of the ore body, and there is a certain amount of extension in the deep part. The ideal superimposed model of the primary halo reflects the ore body trend of the 16th line section. The ore body is inclined to the north as a whole; the ore fluid flows from the deep to the southern side of the north side, and the deep part of the northern side of the ore body has a downward trend.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.