This paper presents photonic devices with 3 dB/cm waveguide loss fabricated in an existing commercial electronic 45 nm SOI-CMOS foundry process. By utilizing existing front-end fabrication processes the photonic devices are monolithically integrated with electronics in the same physical device layer as transistors achieving 4 ps logic stage delay, without degradation in transistor performance. We demonstrate an 8-channel optical microring-resonator filter bank and optical modulators, both controlled by integrated digital circuits. By developing a device design methodology that requires zero process infrastructure changes, a widely available platform for high-performance photonic-electronic integrated circuits is enabled.
Abstract:We demonstrate a monolithic photonic integration platform that leverages the existing state-of-the-art CMOS foundry infrastructure. In our approach, proven XeF 2 post-processing technology and compliance with electronic foundry process flows eliminate the need for specialized substrates or wafer bonding. This approach enables intimate integration of large numbers of nanophotonic devices alongside high-density, highperformance transistors at low initial and incremental cost. We demonstrate this platform by presenting grating-coupled, microring-resonator filter banks fabricated in an unmodified 28 nm bulk-CMOS process by sharing a mask set with standard electronic projects. The lithographic fidelity of this process enables the high-throughput fabrication of second-order, wavelength-division-multiplexing (WDM) filter banks that achieve low insertion loss without post-fabrication trimming. Bienstman, D. V. Thourhout, and R. Baets, "Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography," IEEE Photon. Technol. Lett. 16(5), 1328-1330 (2004). 6. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature 435(7040), 325-327 (2005). 7. C. Gunn, "CMOS photonics for high-speed interconnects," IEEE Micro 26(2), 58-66 (2006). 8. Y. Vlasov, W. M. J. Green, and F. Xia, "High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks," Nat. Photonics 2(4), 242-246 (2008
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.