Drug discovery is a time-consuming, high-investment, and high-risk process in traditional drug development. Drug repositioning has become a popular strategy in recent years. Different from traditional drug development strategies, the strategy is efficient, economical and riskless. There are usually three kinds of approaches: computational approaches, biological experimental approaches, and mixed approaches, all of which are widely used in drug repositioning. In this paper, we reviewed computational approaches and highlighted their characteristics to provide references for researchers to develop more powerful approaches. At the same time, the important findings obtained using these approaches are listed. Furthermore, we summarized 76 important resources about drug repositioning. Finally, challenges and opportunities in drug repositioning are discussed from multiple perspectives, including technology, commercial models, patents and investment.
Biological pathways play important roles in the development of complex diseases, such as cancers, which are multifactorial complex diseases that are generally caused by mutation of multiple genes or dysregulation of pathways. It has become one of the most important issues to analyze pathways through combining multiple types of high-throughput data, such as genomics and proteomics, to understand the mechanisms of complex diseases. Currently, several network-based pathway analysis methods have been proposed. In this overview, we review seven major network-based pathway analysis methods and enumerate their benefits and limitations from an algorithmic perspective to provide a reference for the next generation of pathway analysis methods. Finally, we discuss the challenges that the next generation of methods faces.
BackgroundPathway analysis combining multiple types of high-throughput data, such as genomics and proteomics, has become the first choice to gain insights into the pathogenesis of complex diseases. Currently, several pathway analysis methods have been developed to study complex diseases. However, these methods did not take into account the interaction between internal and external genes of the pathway and between pathways. Hence, these approaches still face some challenges. Here, we propose a network-based pathway-expanding approach that takes the topological structures of biological networks into account.ResultsFirst, two weighted gene-gene interaction networks (tumor and normal) are constructed integrating protein-protein interaction(PPI) information, gene expression data and pathway databases. Then, they are used to identify significant pathways through testing the difference of topological structures of expanded pathways in the two weighted networks. The proposed method is employed to analyze two breast cancer data. As a result, the top 15 pathways identified using the proposed method are supported by biological knowledge from the published literatures and other methods. In addition, the proposed method is also compared with other methods, such as GSEA and SPIA, and estimated using the classification performance of the top 15 expanded pathways.ConclusionsA novel network-based pathway-expanding approach is proposed to avoid the limitations of existing pathway analysis approaches. Experimental results indicate that the proposed method can accurately and reliably identify significant pathways which are related to the corresponding disease.Electronic supplementary materialThe online version of this article (doi:10.1186/s12859-016-1333-x) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.