Large-scale, highly integrated and low-power-consuming hardware is becoming progressively more important for realizing optical neural networks (ONNs) capable of advanced optical computing. Traditional experimental implementations need N2 units such as Mach-Zehnder interferometers (MZIs) for an input dimension N to realize typical computing operations (convolutions and matrix multiplication), resulting in limited scalability and consuming excessive power. Here, we propose the integrated diffractive optical network for implementing parallel Fourier transforms, convolution operations and application-specific optical computing using two ultracompact diffractive cells (Fourier transform operation) and only N MZIs. The footprint and energy consumption scales linearly with the input data dimension, instead of the quadratic scaling in the traditional ONN framework. A ~10-fold reduction in both footprint and energy consumption, as well as equal high accuracy with previous MZI-based ONNs was experimentally achieved for computations performed on the MNIST and Fashion-MNIST datasets. The integrated diffractive optical network (IDNN) chip demonstrates a promising avenue towards scalable and low-power-consumption optical computational chips for optical-artificial-intelligence.
MiR-17-92 cluster is an oncogenic miRNA cluster that is implicated in several cancers, although its role in hepatocarcinogenesis has not been clearly defined. In this study, we show that the miR-17-92 cluster is highly expressed in human hepatocellular carcinoma (HCC) tissues compared to the non-tumorous liver tissues by RT-PCR and in situ hybridization analyses. Increased miR-17-92 cluster expression in HCC tissues was further confirmed by analysis of the RNA-sequencing data of 319 patients available from the Cancer Genome Atlas (TCGA) Data Portal (https://tcga-data.nci.nih.gov/tcga/). To create an animal model that resembles enhanced miR-17-92 in the liver, we developed liver-specific miR-17-92 transgenic mice and the animals were treated with the hepatic carcinogen, diethylnitrosamine (DEN). We observed that the liver-specific miR-17-92 transgenic mice showed significantly increased hepatocellular cancer development compared to the matched wild-type control mice. Forced overexpression of the miR-17-92 cluster in cultured human hepatocellular cancer cells enhanced tumor cell proliferation, colony formation and invasiveness in vitro, whereas inhibition of the miR-17-92 cluster reduced tumor cell growth. By analyzing the miRNA and mRNA sequencing data from the 312 hepatocellular cancer patients available from the TCGA database, we observed that the expression levels of the miR-17-92 cluster members and host gene in the tumor tissues are negatively correlated with several target genes, including CREBL2, PRRG1, NTN4. Our findings demonstrate an important role of the miR-17-92 cluster in hepatocarcinogenesis and suggest the possibility of targeting this pivotal miRNA cluster for potential therapy.
Despite the limited genetic content of microRNAs, their pervasive role in controlling normal and pathology-associated cellular processes has become firmly established in recent years. The importance of microRNA dysregulation in cancer is well appreciated, and a number of oncomirs and tumor suppressor microRNAs have been identified (15). As a member of the oncomir class of microRNAs, miR-155 is implicated in lymphomagenesis and a wide array of nonlymphoid tumors including breast, colon, and lung (7,16,24,39,42,43). Despite strong evidence implicating miR-155 in cancer etiology, the mechanisms through which miR-155 supports the tumor phenotype are unclear, possibly due to limited knowledge of how predicted targets may be involved in the phenotypic properties of cancer. On the other hand, miR-155's roles in normal immune cell development and the adaptive immune response are much better understood (33, 41). These studies have demonstrated a critical role for miR-155 in immune cell activation and maturation. This evidence and other work (8, 40) have identified critical miR-155 targets whose downregulation is required for these processes.The Epstein-Barr virus (EBV) is a human DNA tumor virus that contributes to lymphoid and epithelial cell malignancies. As a herpesvirus, a unique aspect of the EBV infection cycle is the ability to exist in either a lytic replicative state or in a latent state in which no virus is produced. Depending in part on cell background, EBV utilizes multiple forms of latency gene expression programs. True latency and type I latency are defined by the expression of no protein coding genes or by expression of the episomal replication factor EBNA1 only. Type II latency is defined by the expression of EBNA1 and the latent membrane proteins, LMP1 and/or LMP2, and is the predominant form observed in epithelial tissues. Type III latency refers to expression of the full repertoire of latency genes, which are highly tumorigenic and are capable of growth-transforming naïve resting B cells. While this form of latency is not well tolerated in immunocompetent individuals except during early stages of infection (prior to the development of adaptive immunity to these proteins), type III latency-associated lymphoid malignancies are common in immunocompromised individuals. Expression of type III latency genes in B cells mimics antigen-dependent B-cell activation, and accompanying this activation is a substantial induction of miR-155 expression (17,20,23,29,44). While it is reasonable to assume that induction of miR-155 by the type III latency program plays a role in EBV-mediated B-cell activation and oncogenesis, little is known regarding the role of miR-155 in the virus life cycle or its tumorpromoting activities.Originally identified as cytokines critically involved in the regulation of osteogenic differentiation, bone morphogenetic proteins (BMPs) are now appreciated as having critical functions in a vast number of developmental processes. Dysregulation of BMP signaling is also implicated in disease states ...
Recent evidence has suggested an important role of miRNAs in liver biology and diseases, although the implication of miRNAs in cholangiocarcinoma remains to be defined further. This study was designed to examine the biological function and molecular mechanism of miR-101 in cholangiocarcinogenesis and tumor progression. In situ hybridization and quantitative RT-PCR were performed to determine the expression of miR-101 in human cholangiocarcinoma tissues and cell lines. Compared with noncancerous biliary epithelial cells, the expression of miR-101 is decreased in 43.5% of human cholangiocarcinoma specimens and in all three cholangiocarcinoma cell lines used in this study. Forced overexpression of miR-101 significantly inhibited cholangiocarcinoma growth in severe combined immunodeficiency mice. miR-101-overexpressed xenograft tumor tissues showed decreased capillary densities and decreased levels of vascular endothelial growth factor (VEGF) and cyclooxygenase-2 (COX-2). The VEGF and COX-2 mRNAs were identified as the bona fide targets of miR-101 in cholangiocarcinoma cells by both computational analysis and experimental assays. miR-101 inhibits cholangiocarcinoma angiogenesis by direct targeting of VEGF mRNA 3'untranslated region and by repression of VEGF gene transcription through inhibition of COX-2. This study established a novel tumor-suppressor role of miR-101 in cholangiocarcinoma and it suggests the possibility of targeting miR-101 and related signaling pathways for future therapy.
miR-17-92 is an oncogenic miRNA cluster implicated in the development of several cancers; however, it remains unknown whether the miR-17-92 cluster is able to regulate cholangiocarcinogenesis. This study was designed to investigate the biological functions and molecular mechanisms of the miR-17-92 cluster in cholangiocarcinoma. In situ hybridization and quantitative RT-PCR analysis showed that the miR-17-92 cluster is highly expressed in human cholangiocarcinoma cells compared with the nonneoplastic biliary epithelial cells. Forced overexpression of the miR-17-92 cluster or its members, miR-92a and miR-19a, in cultured human cholangiocarcinoma cells enhanced tumor cell proliferation, colony formation, and invasiveness, in vitro. Overexpression of the miR-17-92 cluster or miR-92a also enhanced cholangiocarcinoma growth in vivo in hairless outbred mice with severe combined immunodeficiency (SHO-Prkdc(scid)Hr(hr)). The tumor-suppressor, phosphatase and tensin homolog deleted on chromosome 10 (PTEN), was identified as a bona fide target of both miR-92a and miR-19a in cholangiocarcinoma cells via sequence prediction, 3' untranslated region luciferase activity assay, and Western blot analysis. Accordingly, overexpression of the PTEN open reading frame protein (devoid of 3' untranslated region) prevented miR-92a- or miR-19a-induced cholangiocarcinoma cell growth. Microarray analysis revealed additional targets of the miR-17-92 cluster in human cholangiocarcinoma cells, including APAF-1 and PRDM2. Moreover, we observed that the expression of the miR-17-92 cluster is regulated by IL-6/Stat3, a key oncogenic signaling pathway pivotal in cholangiocarcinogenesis. Taken together, our findings disclose a novel IL-6/Stat3-miR-17-92 cluster-PTEN signaling axis that is crucial for cholangiocarcinogenesis and tumor progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.