La presente investigación busca identificar el cambio del cauce del Río Amazonas entre los años 2015 a 2022 y los efectos del mismo mediante análisis y modelamiento de la dinámica del afluente, no solo sobre las riveras y llanuras aledañas, sino especialmente sobre el Municipio de Puerto Nariño. El municipio según lo documentado, desde el año 2020 se encuentra expuesto de forma directa al cauce, y los análisis conseguidos en la presente investigación, aportan a estudios en gestión de riesgos y planes de ordenamiento territorial que realicen planes de prevención sobre las áreas identificadas las cuales de conformidad con el comportamiento natural del Río, a futuro serán zonas erosionadas, que presenten constantes desprendimientos de tierra y desestabilicen árboles de gran magnitud que representen un peligro para las poblaciones aledañas. La presente investigación hace uso de los Sistemas de Información Geográfica aplicados a imágenes satelitales Landsat 8 con nivel de procesamiento 2 y el Índice de Agua de Diferencia Normalizada Modificado MNDWI, cuya clasificación de cuerpos de agua sobre cualquier otra cobertura es más efectiva que la clasificación que se logra con el índice NDWI, lo que facilitó la identificación del cauce para el modelamiento de la dinámica en los años propuestos.
Increasing human activities have caused significant global ecosystem disturbances at various scales. There is an increasing need for effective techniques to quantify and detect ecological changes. Remote sensing can serve as a measurement surrogate of spatial changes in ecological conditions. This study has improved a newly-proposed remote sensing based ecological index (RSEI) with a sharpened land surface temperature image and then used the improved index to produce the time series of ecological-status images. The Mann–Kendall test and Theil–Sen estimator were employed to evaluate the significance of the trend of the RSEI time series and the direction of change. The change vector analysis (CVA) was employed to detect ecological changes based on the image series. This RSEI-CVA approach was applied to Fujian province, China to quantify and detect the ecological changes of the province in a period from 2002 to 2017 using Moderate Resolution Imaging Spectroradiometer (MODIS) data. The result shows that the RSEI-CVA method can effectively quantify and detect spatiotemporal changes in ecological conditions of the province, which reveals an ecological improvement in the province during the study period. This is indicated by the rise of mean RSEI scores from 0.794 to 0.852 due to an increase in forest area by 7078 km2. Nevertheless, CVA-based change detection has detected ecological declines in the eastern coastal areas of the province. This study shows that the RSEI-CVA approach would serve as a prototype method to quantify and detect ecological changes and hence promote ecological change detection at various scales.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.