Bone age assessment (BAA) evaluates individual skeletal maturity by comparing the characteristics of skeletal development to the standard in a specific population. The X-ray image examination for bone age is tedious and subjective, and it requires high professional skills. Therefore, AI techniques are desired to innovate and improve BAA methods. Most of the BAA method use the whole X-ray image in an end-to-end model directly. Such whole-image-based approaches fail to characterize local changes and provide limited aid for diagnosis and understanding disease progress. To address these issues, we collected and curated a dataset of 2129 cases for the study of BAA with fine-grained skeletal maturity level labels of the 13 ROIs in hand bone based on the expert knowledge from TW method. We designed a four-stage automatic BAA model based on recursive feature pyramid network. Firstly, the palm region was segmented using U-Net, followed by the extraction of multi-target ROIs of hand bone using a recursive feature pyramid network. Given the extracted ROIs, we employed a transfer learning model with attention mechanism to predict the skeletal maturity level of each ROI. Finally, the bone age is assessed based on the percentile curve of bone maturity. The proposed BAA model can automate the BAA. In addition, it provides the detection result of the 13 ROIs and their ROI-level skeletal maturity. The MAE can reach 0.61 years on the dataset with the labeling precision of one year. All the data and annotations used in this paper are released publicly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.