We implement a Coulomb rate-and-state approach to explore the nonlinear relation between stressing rate and seismicity rate in the Groningen gas field. Coulomb stress rates are calculated, taking into account the 3-D structural complexity of the field and including the poroelastic effect of the differential compaction due to fault offsets. The spatiotemporal evolution of the Groningen seismicity must be attributed to a combination of both (i) spatial variability in the induced stressing rate history and (ii) spatial heterogeneities in the rate-and-state model parameters. Focusing on two subareas of the Groningen field where the observed event rates are very contrasted even though the modeled seismicity rates are of similar magnitudes, we show that the rate-and-state model parameters are spatially heterogeneous. For these two subareas, the very low background seismicity rate of the Groningen gas field can explain the long delay in the seismicity response relative to the onset of reservoir depletion. The characteristic periods of stress perturbations, due to gas production fluctuations, are much shorter than the inferred intrinsic time delay of the earthquake nucleation process. In this regime the modeled seismicity rate is in phase with the stress changes. However, since the start of production and for two subareas of our analysis, the Groningen fault system is unsteady and it is gradually becoming more sensitive to the stressing rate.
Shaking and damage in the province of Groningen, the Netherlands, resulting from production-induced seismicity has caused increased public anxiety. Since 2014, production offtake has been reduced stepwise by over 50% in an attempt to minimise production-induced seismicity. The earthquake catalogue, combined with comprehensive data of the changes in production offtake, shows a clear response of seismic activity following the production measures taken. Associated temporal variations in the proportionality between smaller-and larger-magnitude events (the b-value of the Gutenberg-Richter relation) are observed. Since production measures were imposed, the b-value has tended to increase, thus lowering the probability of a larger-magnitude event. The analysis also shows increases in activity rate and b-value prior to larger-magnitude events. Subsequently, the probability of a larger-magnitude event seems to be decreasing prior to the events occurring. This implies that for short-term earthquake prediction of hydrocarbon-production-induced seismicity, these types of analysis could be misleading. However, regional analysis is necessary to explain the observations in terms of rupture initiation. At present, each event felt still draws the interest of both public and press. As some clustering of events in both time and space is still observed, managing both the seismicity and the public perception provides a continuing challenge.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.