This paper will present the most important tools and features required for the development of the FO110 3.0L V10 Mercedes engine.The demands on the natural aspirated 3.0L gasoline engine are discussed by the use of recorded data from trackside. Based on these findings the most important measures to achieve maximum power output and drivability will be discussed. The presentation will mainly focus on the thermodynamic and gasdynamic aspects of the V10 engine to ensure optimum volumetric efficiency. This includes the tuning of the inlet and exhaust system as well as optimisation of valve timings and combustion analysis work. The used simulation and measurement tools are discussed and the most important parameters will be investigated in detail. The advantages and the limitations in terms of accuracy and sensitivity of simulation programs and used measurement technology, applied in high revving race engines, will be shown.Finally, there will be a prediction of future development strategies, seen from the thermodynamic point of view.But, we should like to point out, that -due to the intense competition -no design or other technically related details can be published in this paper.
Electrical efficiency is an important factor for most of the owners of gas engines. To reach a high electrical efficiency, engine manufacturers use four valve cylinder head technology on new designed engines. The change from two valve to four valve technology, in combination with optimized charge motion, can achieve an increase of electrical efficiency up to 2.5%. A significant number of engines in the market are only equipped with two valve cylinder heads, thus leaving potential to reduce carbon emissions and fuel consumption. The scope of the paper applies to the modernization of an already well established gas engine series available on the market with a power range of 500–1100kW [1]. In the first step, the potentials were considered purely in the context of a change in configuration of the spark plug, to pre-chamber spark plug. As second step an optimization of the ports was examined. Due to the pre-existing high level of development of the combustion stage, combined with an adaption of the boost charging system, an improvement of almost 2.5% was achieved. According to data sheets, modern gas engines within this power range have efficiencies in the range of ηe ∼ 44%. The project team therefore proceeded to develop a new cylinder head along with new design leading to a better combustion. Minimizing changes around the periphery of the engine was a prerequisite in order to complete these on site as part of the 30.000-hour service. Intake- as well as exhaustport geometries were optimized with the aid of CFD tools, such that swirl and flow capacity values achieved their specified objectives. The geometries of the water jacket and valve train were also optimized through a similar methodology. These changes led to a 7% reduction in gas exchange work, which directly reflect within improved efficiency levels. Altogether, the various measures (including combustion optimization) resulted in an efficiency improvement of about 2.5% leading to an electric efficiency of 42.9%. The first endurance run shows that the mechanics match the expected technical requirements. Very low wear rates despite the increased masses of the valve train could be reached due to higher qualities in terms of materials. The paper focuses particularly on the flow optimization in conjunction with the variables surrounding the mechanic design. Finally, the test results of the pilot engines are presented alongside an economic analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.