[1] The aerodynamic friction between air and sea is an important part of the momentum balance in the development of tropical cyclones. Measurements of the drag coefficient, relating the tangential stress (frictional drag) between wind and water to the wind speed and air density, have yielded reliable information in wind speeds less than 20 m/s (about 39 knots). In these moderate conditions it is generally accepted that the drag coefficient (or equivalently, the ''aerodynamic roughness'') increases with the wind speed. Can one merely extrapolate this wind speed tendency to describe the aerodynamic roughness of the ocean in the extreme wind speeds that occur in hurricanes (wind speeds greater than 30 m/s)? This paper attempts to answer this question, guided by laboratory extreme wind experiments, and concludes that the aerodynamic roughness approaches a limiting value in high winds. A fluid mechanical explanation of this phenomenon is given. INDEX TERMS: 4504
[1] Data from five recent field campaigns are selected for pure wind sea, deep water, and fully rough flow conditions. The combined data set includes a wide range of wave ages, with high variability in both friction velocity and wave phase speed. These data, which are expected to follow Monin-Obukhov similarity scaling, are used to investigate the influence of wave age on wind stress. The relationship between the dimensionless roughness and inverse wave age is found to be z o /s = 13.4 (u * /c p ) 3.4 , where z o is the surface roughness length, s is the standard deviation of the surface elevation, u * is the friction velocity, and c p is the wave phase speed at the peak of the spectrum. This relationship, which represents a significant dependence of roughness on wave age, was obtained using a procedure that minimizes the effects of spurious correlation in u * . It is also shown to be consistent with the wave age relationship derived using an alternate form of the dimensionless roughness, namely, the Charnock parameter z o g/u * 2 , where g is the gravitational constant.
Internal gravity waves, the subsurface analogue of the familiar surface gravity waves that break on beaches, are ubiquitous in the ocean. Because of their strong Internal gravity waves are propagating disturbances of the ocean's density stratification. Their physics resembles that of surface gravity waves but with buoyancy rather than gravity providing their restoring force -making them much larger (10's to 100's of meters instead of 1 to 10 meters) and slower (hours instead of seconds). Generated primarily by tidal flow past seafloor topography and winds blowing on the sea surface, and typically having multi-kilometer-scale horizontal wavelengths, their estimated 1 TW of deep-sea dissipation is understood to play a crucial role in the ocean's global redistribution of heat and momentum 12 . A major challenge is to improve understanding of internal wave generation, propagation, steepening and dissipation, so that the role of internal waves can be more accurately incorporated in climate models.The internal waves that originate from the Luzon Strait on the eastern margin of the South China Sea (SCS) are the largest documented in the global oceans ( Figure 1).As the waves propagate west from the Luzon Strait they steepen dramatically ( Figure 1a), producing distinctive solitary wave fronts evident in sun glint and synthetic aperture radar (SAR) images from satellites ( Figure 1b). When they shoal onto the continental slope to the west, the downward displacement of the ocean's layers associated with these solitary waves can exceed 250 m in 5 minutes 8 . On such a scale, these waves pose hazards for underwater navigation and offshore drilling 4 , and supply nutrients from the deep ocean that nourish coral reefs 1 and pilot whale populations that forage in their wakes 13 .Over the past decade a number of field studies have been conducted in the region; this work has been comprehensively reviewed 10,11 . All of these studies, however, focused on the propagation of the internal waves across the SCS and their interactions with the continental shelf of China. Until the present study there had been no substantial in situ data gathered at the generation site of the Luzon Strait, in large part because of the extremely challenging operating conditions. A consequence has been persistent 5 confusion regarding the nature of the generation mechanism 11 ; an underlying cause being the sensitivity of the models employed to the system parameters, such as the chosen transect for a two-dimensional model, the linear internal wave speed or the assumed location of the waves' origin within the Luzon Strait. Furthermore, the lack of in situ data from the Luzon Strait has meant an inability to test numerical predictions of energy budgets 9 and no knowledge of the impact of the Kuroshio on the emergence of internal solitary waves 11 .The goal of IWISE is to obtain the first comprehensive in situ data set from the Luzon Strait, which in combination with high-resolution three-dimensional numerical modeling supports a cradle-to-grave picture ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.