The 15 January 2022 climactic eruption of Hunga volcano, Tonga, produced an explosion in the atmosphere of a size that has not been documented in the modern geophysical record. The event generated a broad range of atmospheric waves observed globally by various ground-based and spaceborne instrumentation networks. Most prominent is the surface-guided Lamb wave ( ≲ 0.01 Hz), which we observed propagating for four (+three antipodal) passages around the Earth over six days. Based on Lamb wave amplitudes, the climactic Hunga explosion was comparable in size to that of the 1883 Krakatau eruption. The Hunga eruption produced remarkable globally-detected infrasound (0.01–20 Hz), long-range (~10,000 km) audible sound, and ionospheric perturbations. Seismometers worldwide recorded pure seismic and air-to-ground coupled waves. Air-to-sea coupling likely contributed to fast-arriving tsunamis. We highlight exceptional observations of the atmospheric waves.
SUMMARYThe smoothed particle hydrodynamics (SPH) method has proven useful for modeling large deformation of fluids including fluids with stress-free surfaces. Because of the Lagrangian nature of the method, it is well suited to address the thermal evolution of these free surface flows. Boundary conditions at the interface of the fluid with a solid wall are usually enforced through the use of boundary particles. However, applying conditions at free surfaces, in particular gradient boundary conditions, can be problematic with traditional SPH formulations due to the degradation of the gradient approximation in these regions. Compounding this difficulty is that traditional approximations of the Laplacian operator suffer a similar degradation near free surfaces. A new SPH formulation of the Laplacian operator is presented, which improves the accuracy near free surface boundaries. This new form is based on a gradient approximation commonly used in thermal, viscous, and pressure projection problems, but includes higher-order terms in the appropriate Taylor series. Comparisons with other approximations of second-order derivatives are given. The discretization is tested by solving steady-state and transient problems of thermal diffusion using the Backward Euler method with a GMRES solver. Boundary conditions are imposed through an augmented matrix.
[1] We develop a transient, 3-D Eulerian model (Ash3d) to predict airborne volcanic ash concentration and tephra deposition during volcanic eruptions. This model simulates downwind advection, turbulent diffusion, and settling of ash injected into the atmosphere by a volcanic eruption column. Ash advection is calculated using time-varying pre-existing wind data and a robust, high-order, finite-volume method. Our routine is mass-conservative and uses the coordinate system of the wind data, either a Cartesian system local to the volcano or a global spherical system for the Earth. Volcanic ash is specified with an arbitrary number of grain sizes, which affects the fall velocity, distribution and duration of transport. Above the source volcano, the vertical mass distribution with elevation is calculated using a Suzuki distribution for a given plume height, eruptive volume, and eruption duration. Multiple eruptions separated in time may be included in a single simulation. We test the model using analytical solutions for transport. Comparisons of the predicted and observed ash distributions for the 18 August 1992 eruption of Mt. Spurr in Alaska demonstrate to the efficacy and efficiency of the routine.Citation: Schwaiger, H. F., R. P. Denlinger, and L. G. Mastin (2012), Ash3d: A finite-volume, conservative numerical model for ash transport and tephra deposition,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.