Immune responses have been described for many different insect species. However, it is generally acknowledged that immune systems must therefore differ from those of vertebrates. An effective humoral immune response has been found in pupae of the cecropia moth, Hyalophora cecropia. The expression of this multicomponent system requires de novo synthesis of RNA and proteins and its broad antibacterial activity is due to at least three independent mechanisms, the most well known of which is the insect lysozyme. However, this enzyme is bactericidal for only a limited number of Gram-positive bacteria. WE recently purified and characterized P9A and P9B, which are two small, basic proteins with potent antibacterial activity against Escherichia coli and several other Gram-negative bacteria. We believe that P9A and P9B plays an important part in the humoral immune responses described previously and that the P9 proteins represent a new class of antibacterial agents for which we propose the name cecropins. We describe here the primary structures of cecropins A and B. We also show that cecropin A is specific for bacteria in contrast to melittin, the main lytic component in bee venom which lyses both bacteria and eukaryotic cells.
Abstract. Boman HG (Microbiology and Tumor Biology Center, Karolinska Institutet, Stockholm, Sweden). Antibacterial peptides: basic facts and emerging concepts (Review). J Intern Med 2003; 254: 197-215. Antibacterial peptides are the effector molecules of innate immunity. Generally they contain 15-45 amino acid residues and the net charge is positive. The cecropin type of linear peptides without cysteine were found first in insects, whilst the defensin type with three disulphide bridges were found in rabbit granulocytes. Now a database stores more than 800 sequences of antibacterial peptides and proteins from the animal and plant kingdoms. Generally, each species has 15-40 peptides made from genes, which code for only one precursor. The dominating targets are bacterial membranes and the killing reaction must be faster than the growth rate of the bacteria. Some antibacterial peptides are clearly multifunctional and an attempt to predict this property from the hydrophobicity of all amino acid side chains are given. Gene structures and biosynthesis are known both in the fruit fly Drosophila and several mammals. Humans need two classes of defensins and the cathelicidin-derived linear peptide LL-37. Clinical cases show that deficiencies in these peptides give severe symptoms. Examples given are morbus Kostmann and atopic allergy. Several antibacterial peptides are being developed as drugs.
The D enantiomers of three naturally occurring antibiotics-cecropin A, magainin 2 amide, and melittin-were synthesized. In addition, the D enantiomers of two synthetic chimeric cecropin-melittin hybrid peptides were prepared. Each D isomer was shown by circular dichroism to be a mirror image of the corresponding L isomer in several solvent mixtures. In 20% hexafluoro-2-propanol the peptides contained 43-75% a-helix. The all-D peptides were resistant to enzymatic degradation. The peptides produced single-channel conductances in planar lipid bilayers, and the D and L enantiomers caused equivalent amounts of electrical conductivity. All of the peptides were potent antibacterial agents against representative Gram-negative and Gram-positive species. The D and L enantiomers of each peptide pair were equally active, within experimental error. Sheep erythrocytes were lysed by both D-and L-melittin but not by either isomer of cecropin A, magainin 2 amide, or the hybrids cecropin A-(1-13)-melittin-(1-13)-NH2 or cecropin A-(1-8)-melittin-(1-18)-NH2. The infectivity of the bloodstream form of the malaria parasite Plasmodium falciparum was also inhibited by the D and L hybrids. It is suggested that the mode of action of these peptides on the membranes of bacteria, erythrocytes, plasmodia, and artificial lipid bilayers may be similar and involves the formation of ion-channel pores spanning the membranes, but without specific interaction with chiral receptors or enzymes.The cecropins (1, 2) and several other antibiotic peptides of the animal kingdom, including defensins (3), magainins (4), and the bee venom toxin melittin (5), are thought to function through the formation of ion channels in lipid membranes. This idea has been based on recent studies of electrical conductivity in artificial lipid bilayers (3,(6)(7)(8), where activity is a function of the structure of the peptide and the composition of the membrane lipids. The bilayer lipids and cell membranes are chiral and contain many asymmetric centers. It has been generally assumed that the chirality of the membrane would require a specific chirality ofthe peptide for it to be active, in much the same way that peptide hormones are required to fit with the conformation of their natural receptors or for a substrate and enzyme to form a tight stereospecific complex. However, we have suggested that these peptide antibiotics can exert their effect without requiring a specific target receptor on the cell membrane (7, 9).The purpose of the present study was to test this assumption by the synthesis of the all-D enantiomers of several natural, all-L peptide antibiotics and some of their active analogs. These D stereoisomers would be expected to assume equivalent, but mirror image, conformations when placed in the same environment as the all-L peptides. If a close molecular contact with the chiral components of the cell membrane is required, the D enantiomers would be expected to be inactive. However, if the interaction of the peptide with the membrane is only between achiral...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.