The molecular requirements for the translocation of secretory proteins across, and the integration of membrane proteins into, the plasma membrane of Escherichia coli were compared. This was achieved in a novel cell-free system from E. coli which, by extensive subfractionation, was simultaneously rendered deficient in SecA/SecB and the signal recognition particle (SRP) components, Ffh (P48), 4.5S RNA, and FtsY. The integration of two membrane proteins into inside-out plasma membrane vesicles of E. coli required all three SRP components and could not be driven by SecA, SecB, and ⌬H ϩ . In contrast, these were the only components required for the translocation of secretory proteins into membrane vesicles, a process in which the SRP components were completely inactive. Our results, while confirming previous in vivo studies, provide the first in vitro evidence for the dependence of the integration of polytopic inner membrane proteins on SRP in E. coli. Furthermore, they suggest that SRP and SecA/SecB have different substrate specificities resulting in two separate targeting mechanisms for membrane and secretory proteins in E. coli. Both targeting pathways intersect at the translocation pore because they are equally affected by a blocked translocation channel.
Co-translational membrane targeting of proteins by the bacterial signal-recognition particle (SRP) requires the specific interaction of the SRP-ribosome nascent chain complex with FtsY, the bacterial SRP receptor (SR). FtsY is homologous to the SRasubunit of the eukaryotic SR, which is tethered to the endoplasmic-reticulum membrane by its interaction with the integral SRb-subunit. In contrast to SRa, FtsY is partly membrane associated and partly located in the cytosol. However, the mechanisms by which FtsY associates with the membrane are unclear. No gene encoding an SRb homologue has been found in bacterial genomes, and the presence of an FtsY-specific membrane receptor has not been shown so far. We now provide evidence for the direct interaction between FtsY and the SecY translocon. This interaction offers an explanation of how the bacterial SRP cycle is regulated in response to available translocation channels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.