Fluorescence emission and excitation spectra of para-phenylene vinylenes nPV with nϭ1 -4 styryl units are investigated experimentally and theoretically as a function of the temperature and the polarizability of the solvent. At low temperatures, the vibronic structures of the S 0 ↔S 1 emission and excitation bands are mirror symmetrical with negligible 0-0 energy gaps. The frequencies of the prominent vibrational modes are assigned to the second longitudinal acoustic phonon modes of the entire molecules and to localized carbon-carbon stretching vibrations. The complete vibronic structures of the spectra are calculated at the ab initio Hartree-Fock (HF/6-311G*) and restricted configuration interaction singles (RCIS/6-311G*) levels of theory assuming planar C 2h molecular symmetry. The theoretically predicted spectra are in good agreement with the experiments. At room temperature, a 0-0 energy gap between the first band maxima opens, and the mirror symmetry between absorption and emission is lost. The vibronic band shapes and 0-0 band gaps are successfully simulated with a combination of Gaussian and exponential broadening of the low temperature spectra. The exponential term reflects the differences in thermal population of the phenyl-vinyl torsional modes in the S 0 and S 1 electronic states. Spectral shifts upon changes in temperature and solvents are quantitatively explained by changes in the refractive index of the environment. From extrapolation of the experimental data the vertical and adiabatic transition energies of the oligomers in vacuo are obtained and compared to RCIS and semiempirical quantum chemical calculations, respectively.
Using electronic absorption and fluorescence spectroscopic techniques, as well as quantum chemical calculations, we have studied the electronic spectra of thia-bridged stilbenophane (TSP) with close cofacial contact of two trans-stilbene (t-SB) units. Compared to the t-SB monomer, the experimental consequences of the cofacial arrangement are (i) a splitting of the main absorption band with a weakly allowed emitting state, and (ii) a strongly red-shifted, unstructured emission spectrum with long fluorescence decay times. According to the theoretical investigations, the two t-SB units are strongly bent in the electronic ground state (S 0 ), because of repulsive π-π overlap. In the first excited state (S 1 ), the t-SB units become almost planar, because of attractive π*-π* overlap. As a consequence, the symmetry-forbidden S 0 T S 1 transition couples strongly to interchromophore breathing modes of low frequency (ν 1 ) 67 cm -1 , ν 2 ) 117 cm -1 ), yielding structureless spectra with large Stokes shifts. The features of the calculated spectra are in good agreement with the experimental data. The results indicate that strong intermolecular vibronic coupling is also responsible for "excimer-like" emission in organic molecular crystals of cofacially arranged molecules. Furthermore, the different geometries in the S 0 and S 1 states of TSP give evidence for the mechanism of [2+2]photodimerization of t-SB in solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.