Microfluidic devices often contain several phases. Their design can be supported by interface-resolving numerical simulations, requiring accurate methods and validated computer codes. Especially challenging are submillimetre air bubbles in water due to their large density contrast and dominance of surface tension. Here, we evaluate two numerical methods implemented in OpenFOAM ® , namely the standard solver interFoam with an algebraic volume-of-fluid method relying on a sharp interface representation and phaseFieldFoam relying on the phase-field method with diffuse interface representation. For a circular bubble in static equilibrium, we explore the impacts of uniform grid resolution and bubble size on bubble shape, mass conservation, pressure jump and spurious currents. While the standard interFoam solver exhibits excellent mass conservation with errors below 0.1% on fine grids, it lacks the accuracy to predict reasonable physics for a bubble in microfluidic systems. At higher resolution, large spurious currents significantly displace and deform the bubble, which is oscillating with resolution dependent mode and frequency. Furthermore, the pressure jump is consistently underestimated by more than 10%. The solver phaseFieldFoam suffers from much larger mass losses of up to 2%, which decrease as the ratio between interface thickness and bubble diameter decreases provided the diffuse interface region is adequately resolved. Spurious currents are very low and the bubble remains circular preserving its initial position with an error in pressure jump below 1%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.