17Micromorphological investigations of archaeological bones make it possible to study decay 18 processes and the associated depositional environment in one go. A selection of 19 micromorphological thin sections from soil samples from three wetland sites in Switzerland,
20The Netherlands and Norway that contained bone fragments were studied. Goal was to
Umhlatuzana rockshelter is an archaeological site with an occupational record covering the Middle Stone Age, Later Stone Age, and Iron Age. The presence of both Middle and Later Stone Age assemblages makes Umhlatuzana the ideal location for the study of the MSA–LSA transition (20–40 ka) in southern Africa. This transitional period is characterized by important modifications in stone tool technology, from prepared core technology to a toolkit based on microlith production. These changes are argued to have occurred in response to changes in climate and environment leading up to the Last Glacial Maximum. The deposits bearing the transitional assemblages at Umhlatuzana rockshelter appear homogeneous with no visible stratigraphic boundaries. This study integrates geoarchaeological techniques in order to explore fine-resolution geochemical differentiations of the sediments that are macroscopically invisible, and that will provide insight into (post-)depositional processes over time. Samples were systematically retrieved from the western profile of the site following a grid-based sampling strategy and analyzed for pH, elemental composition (XRF), and Magnetic Susceptibility. Additionally, the results were integrated with preliminary micromorphological observations. Our study reveals a steady, gradual change in the geochemistry of the deposits throughout the Pleistocene, related to a combination of environmental change and occupation intensity. We suggest that the part of the sequence reported to bear Middle to Later Stone Age transitional industries is characterized by wetter environmental conditions compared to the underlying deposits. Additionally, we support results from previous studies that excluded large scale post-depositional movement of the sedimentary sequence. Our study offers a successful multi-proxy approach to systematically sample and study archaeological deposits at the macro and micro scale, integrating a variety of geoarchaeological techniques. The approach provides insight into the depositional and post-depositional history of the site, and allows for questions of stratigraphic integrity, anthropogenic input, preservation, and environmental change to be addressed.
The study of archaeological artefacts using deployed in situ analytical instruments presents some obvious advantages. Including, obtaining an immediate feedback that can be used to redefine in real-time fieldwork strategies. Ideally analytical field instruments should also have characteristics that limit damage to the studied artefact.Here, we present a case study on the use of a Hand Held XRF (HH XRF) device employed to define the composition of copper-alloyed artefacts retrieved from the Roman military site of Fectio in the vicinity of Vechten (The Netherlands). The goals of the study were to establish artefact preservation status, to investigate artefact elemental composition, and to compare the composition of artefact corrosion layer and uncorroded core. The results showed that the objects were in an overall good preservation state. Decuprification and dezincification represented the probable main corrosion processes resulting in the formation of smooth corrosion layers or patinas. The major elemental composition of the artefacts' uncorroded cores showed a wide-range variability most likely associated with recycling practices of scrap metal during the 3 rd century CE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.