A flash photolysis investigation of aromatic compounds has shown that photoionization in aqueous solution occurs for a number of benzene derivatives with electron-donating substituents, aryl carboxylic acids, and hetero cyclics with five-member rings. Thermo dynamic estimates for several benzene deriva tives indicate that electron ejection is feasible and is competitive with bond rupture. It is sug gested that the lowest π-π* state of the ring sys tem populates a charge transfer intermediate which can release an electron to the solvent. Comparing the hydrated electron yields with scavenging rate constants show that the molecules which are not readily photoionized in solution tend to react most rapidly with hydrated electrons. photoionization in condensed systems has been considered for many years in connection with the absorption spectra of halide ions in solu tion and the photolysis of aromatic compounds in rigid glasses. Recently, Jortner et al. (15) proposed that hydrated electrons are an initial product of the ultraviolet-light photolysis of aqueous phenolate ion, based on the effects of scavengers on the quantum yield. This explanation was con firmed by the work of Grossweiner and co-workers (10, 29) who reported a direct observation of the hydrated electron absorption band by flash photolysis of phenol derivatives and aromatic amino acids. A more detailed investigation of aqueous phenol and the cresols by Dobson and Grossweiner (6) showed that hydrated electrons are an initial photo chemical product of both the neutral molecules and the anions, although the initial yields from the former were lower by an order of magnitude. The purpose of this investigation was to survey representative aromatic compounds for optical generation of the hydrated electron, in order to clarify the relationship between molecular structure and photoionization 279 Downloaded by UNIV OF CALIFORNIA SAN DIEGO on November 18, 2014 |
Messungen des Paramagnetismus zeigen, daß beim Bis-dibenzo[a.i]fluorenyliden bei Zimmertemperatur neben dem diamagnetischen Grundzustand ein paramagnetischer Zustand im Gleichgewicht vorhanden ist. Es wird angenommen, daß der paramagnetische Zustand ein Biradikalzustand mit senkrecht aufeinanderstehenden Molekelhälften ist. Der Energieunterschied beider Formen beträgt 3–4 kcal/Mol. Bei einer Reihe von Radikalreaktionen wirkt Bis-dibenzo[a.i]fluorenyliden als starker Inhibitor
Dehydrobenzol reagiert mit Dimethylsulfid zu einem Ylid, das durch überschüssige lithiumorganische Verbindung stabilisiert wird. Durch Zugeben von HClO4 entsteht daraus Dimethyl-phenyl-sulfoniumperchlorat. In Abwesenheit eines Stabilisators zerfällt das Ylid in Polymethylen und Methyl-phenyl-sulfid. Mit höheren Dialkylsulfiden reagiert Dehydrobenzol unter Spaltung der Thioätherbindung und Bildung von Alkyl-phenyl-sulfid und Olefin. Das intermediär gebildete Ylid stabilisiert sich also durch intramolekulare Hofmann-Eliminierung. — Dimethyl-phenyl-sulfoniumperchlorat setzt sich mit Kalium-tert.-butylat in wasserfreiem Dimethylsulfoxyd zu Äthylen, Isobutylen und Methyl-phenyl-sulfid um. Die Hofmann-Eliminierung verläuft bei Sulfoniumsalzen in Dimethylsulfoxyd besonders glatt. Dimethyl-cyclooctyl-sulfoniumjodid ergibt ein Gemisch von 92.4% cis- und 7.6% trans-Cycloocten. — Bei der Umsetzung von lithium-organischen Verbindungen mit Triphenylsulfoniumbromid bildet sich in geringer Ausbeute Dehydrobenzol; Hauptreaktionen sind die Bildung einer instabilen Zwischenstufe mit vierbindigem Schwefel und eine Austauschreaktion
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.